Abstract

Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of C. elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.

Article and author information

Author details

  1. Annalise B Paaby

    Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
    For correspondence
    apaaby@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Amelia G White

    Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David D Riccardi

    Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kristin C Gunsalus

    Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabio Piano

    Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew V Rockman

    Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jonathan Flint, Wellcome Trust Centre for Human Genetics, United Kingdom

Version history

  1. Received: June 3, 2015
  2. Accepted: August 21, 2015
  3. Accepted Manuscript published: August 22, 2015 (version 1)
  4. Version of Record published: September 15, 2015 (version 2)
  5. Version of Record updated: March 24, 2016 (version 3)

Copyright

© 2015, Paaby et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,091
    views
  • 356
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Annalise B Paaby
  2. Amelia G White
  3. David D Riccardi
  4. Kristin C Gunsalus
  5. Fabio Piano
  6. Matthew V Rockman
(2015)
Wild worm embryogenesis harbors ubiquitous polygenic modifier variation
eLife 4:e09178.
https://doi.org/10.7554/eLife.09178

Share this article

https://doi.org/10.7554/eLife.09178

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.