Multipotent versus differentiated cell fate selection in the developing Drosophila airways

  1. Ryo Matsuda
  2. Chie Hosono
  3. Christos Samakovlis  Is a corresponding author
  4. Kaoru Saigo
  1. Stockholm University, Sweden
  2. University of Tokyo, Japan

Abstract

Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into 2 types of cells with distinct developmental potentials: A proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway.

Article and author information

Author details

  1. Ryo Matsuda

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Chie Hosono

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Christos Samakovlis

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    For correspondence
    Christos.Samakovlis@su.se
    Competing interests
    The authors declare that no competing interests exist.
  4. Kaoru Saigo

    Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute for Fundamental Research, India

Version history

  1. Received: June 24, 2015
  2. Accepted: December 2, 2015
  3. Accepted Manuscript published: December 2, 2015 (version 1)
  4. Version of Record published: February 23, 2016 (version 2)

Copyright

© 2015, Matsuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,723
    views
  • 268
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryo Matsuda
  2. Chie Hosono
  3. Christos Samakovlis
  4. Kaoru Saigo
(2015)
Multipotent versus differentiated cell fate selection in the developing Drosophila airways
eLife 4:e09646.
https://doi.org/10.7554/eLife.09646

Share this article

https://doi.org/10.7554/eLife.09646

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.