Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation

  1. Tom Kruitwagen
  2. Annina Denoth-Lippuner
  3. Bryan J Wilkins
  4. Heinz Neumann
  5. Yves Barral  Is a corresponding author
  1. Eidgenössische Technische Hochschule Zürich, Switzerland
  2. Georg- August University Göttingen

Abstract

The mitotic segregation of chromosomes requires their extensive folding into units of manageable size. Here, we report on how phosphorylation at serine 10 of histone H3 contributes to this process. We developed a fluorescence-based assay to study local compaction of chromatin in living yeast cells and show that chromosome condensation entails two temporally and mechanistically independent processes. Initially, nucleosome-nucleosome interactions triggered by phosphorylation of S10 on H3 and deacetylation of K16 on histone H4 promote short-range compaction of chromatin during early mitosis. Subsequently, condensin mediates the axial contraction of chromosome arms, peaking in late anaphase. Whereas defects in chromatin compaction did not impair axial contraction and condensin inactivation did not affect short-range chromatin compaction, inactivation of both pathways caused synergistic defects in chromosome segregation and cell viability. Interestingly, both pathways rely on the deacetylase Hst2, suggesting that Hst2 coordinates chromatin compaction and axial contraction to shape mitotic chromosomes.

Article and author information

Author details

  1. Tom Kruitwagen

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  2. Annina Denoth-Lippuner

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  3. Bryan J Wilkins

    Free Floater (Junior) Research Group Applied Synthetic Biology, Georg- August University Göttingen
    Competing interests
    Bryan J Wilkins, : Conception and design: NoAcquisition of data: YesAnalysis and interpretation of data: YesDrafting or revising the article: NoContributed unpublished essential data or reagents: No.
  4. Heinz Neumann

    Free Floater (Junior) Research Group Applied Synthetic Biology, Georg- August University Göttingen
    Competing interests
    Heinz Neumann, : Conception and design: NoAcquisition of data: NoAnalysis and interpretation of data: YesDrafting or revising the article: YesContributed unpublished essential data or reagents: No.
  5. Yves Barral

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    For correspondence
    yves.barral@bc.biol.ethz.ch
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Mohan Balasubramanian, University of Warwick, United Kingdom

Version history

  1. Received: July 30, 2015
  2. Accepted: November 27, 2015
  3. Accepted Manuscript published: November 28, 2015 (version 1)
  4. Version of Record published: February 3, 2016 (version 2)

Copyright

© 2015, Kruitwagen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,214
    views
  • 740
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Kruitwagen
  2. Annina Denoth-Lippuner
  3. Bryan J Wilkins
  4. Heinz Neumann
  5. Yves Barral
(2015)
Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation
eLife 4:e10396.
https://doi.org/10.7554/eLife.10396

Share this article

https://doi.org/10.7554/eLife.10396

Further reading

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.