Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes

  1. Zachary B Katz
  2. Brian p English
  3. Timothée Lionnet
  4. Young J Yoon
  5. Nilah Monnier
  6. Ben Ovryn
  7. Mark Bathe
  8. Robert H Singer  Is a corresponding author
  1. Albert Einstein College of Medicine, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. Stanford University School of Medicine, United States
  4. Massachusetts Institute of Technology, United States

Abstract

Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. This data indicates that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality.

Article and author information

Author details

  1. Zachary B Katz

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  2. Brian p English

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Timothée Lionnet

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Young J Yoon

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Nilah Monnier

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Ben Ovryn

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  7. Mark Bathe

    Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Robert H Singer

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    For correspondence
    robert.singer@einstein.yu.edu
    Competing interests
    Robert H Singer, Reviewing editor, eLife.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: July 28, 2015
  2. Accepted: December 29, 2015
  3. Accepted Manuscript published: January 13, 2016 (version 1)
  4. Version of Record published: February 12, 2016 (version 2)

Copyright

© 2016, Katz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,821
    views
  • 2,033
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary B Katz
  2. Brian p English
  3. Timothée Lionnet
  4. Young J Yoon
  5. Nilah Monnier
  6. Ben Ovryn
  7. Mark Bathe
  8. Robert H Singer
(2016)
Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes
eLife 5:e10415.
https://doi.org/10.7554/eLife.10415

Share this article

https://doi.org/10.7554/eLife.10415

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.