Abstract

Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo.

Article and author information

Author details

  1. Kimberly C Tu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  2. Li-Chun Cheng

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  3. Hanh TK Vu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  4. Jeffrey J Lange

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  5. Sean A McKinney

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  6. Chris W Seidel

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  7. Alejandro Sánchez Alvarado

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    asa@stowers.org
    Competing interests
    Alejandro Sánchez Alvarado, Reviewing editor, eLIFE.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Version history

  1. Received: July 30, 2015
  2. Accepted: October 10, 2015
  3. Accepted Manuscript published: October 12, 2015 (version 1)
  4. Version of Record published: December 3, 2015 (version 2)

Copyright

© 2015, Tu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,379
    views
  • 727
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kimberly C Tu
  2. Li-Chun Cheng
  3. Hanh TK Vu
  4. Jeffrey J Lange
  5. Sean A McKinney
  6. Chris W Seidel
  7. Alejandro Sánchez Alvarado
(2015)
Egr-5 is a post-mitotic regulator of planarian epidermal differentiation
eLife 4:e10501.
https://doi.org/10.7554/eLife.10501

Share this article

https://doi.org/10.7554/eLife.10501

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.