A general strategy to construct small molecule biosensors in eukaryotes

  1. Justin Feng
  2. Benjamin W Jester
  3. Christine E Tinberg
  4. Daniel J Mandell  Is a corresponding author
  5. Mauricio S Antunes
  6. Raj Chari
  7. Kevin J Morey
  8. Xavier Rios
  9. June I Medford
  10. George M Church
  11. Stanley Fields
  12. David Baker
  1. Harvard Medical School, United States
  2. University of Washington, United States
  3. Colorado State University, United States
  4. Howard Hughes Medical Institute, University of Washington, United States

Abstract

Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

Article and author information

Author details

  1. Justin Feng

    Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States
    Competing interests
    Justin Feng, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work.
  2. Benjamin W Jester

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    Benjamin W Jester, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work.
  3. Christine E Tinberg

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    Christine E Tinberg, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work.
  4. Daniel J Mandell

    Department of Genetics, Harvard Medical School, Boston, United States
    For correspondence
    djmandell@gmail.com
    Competing interests
    Daniel J Mandell, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work. Harvard University has filed a provisional patent.
  5. Mauricio S Antunes

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  6. Raj Chari

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    Raj Chari, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work.
  7. Kevin J Morey

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  8. Xavier Rios

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. June I Medford

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  10. George M Church

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    George M Church, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work.
  11. Stanley Fields

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    Stanley Fields, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work.
  12. David Baker

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    David Baker, has filed a provisional application (patent application number 62220628) with the US Patent and Trademark Office on this work.

Reviewing Editor

  1. Jeffery W Kelly, Scripps Research Institute, United States

Version history

  1. Received: August 6, 2015
  2. Accepted: December 17, 2015
  3. Accepted Manuscript published: December 29, 2015 (version 1)
  4. Accepted Manuscript updated: December 30, 2015 (version 2)
  5. Version of Record published: January 26, 2016 (version 3)

Copyright

© 2015, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,694
    views
  • 3,183
    downloads
  • 136
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin Feng
  2. Benjamin W Jester
  3. Christine E Tinberg
  4. Daniel J Mandell
  5. Mauricio S Antunes
  6. Raj Chari
  7. Kevin J Morey
  8. Xavier Rios
  9. June I Medford
  10. George M Church
  11. Stanley Fields
  12. David Baker
(2015)
A general strategy to construct small molecule biosensors in eukaryotes
eLife 4:e10606.
https://doi.org/10.7554/eLife.10606

Share this article

https://doi.org/10.7554/eLife.10606

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.