Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3

  1. Radim Osicka  Is a corresponding author
  2. Adriana Osickova
  3. Shakir Hasan
  4. Ladislav Bumba
  5. Jiri Cerny
  6. Peter Sebo
  1. Institute of Microbiology of the CAS, Czech Republic
  2. Institute of Biotechnology of the CAS, Czech Republic

Abstract

Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis.

Article and author information

Author details

  1. Radim Osicka

    Institute of Microbiology of the CAS, Prague, Czech Republic
    For correspondence
    osicka@biomed.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
  2. Adriana Osickova

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Shakir Hasan

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Ladislav Bumba

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiri Cerny

    Institute of Biotechnology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Sebo

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Johanna Ivaska, University of Turku, Finland

Version history

  1. Received: August 11, 2015
  2. Accepted: December 9, 2015
  3. Accepted Manuscript published: December 9, 2015 (version 1)
  4. Version of Record published: February 2, 2016 (version 2)

Copyright

© 2015, Osicka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,385
    views
  • 399
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Radim Osicka
  2. Adriana Osickova
  3. Shakir Hasan
  4. Ladislav Bumba
  5. Jiri Cerny
  6. Peter Sebo
(2015)
Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3
eLife 4:e10766.
https://doi.org/10.7554/eLife.10766

Share this article

https://doi.org/10.7554/eLife.10766

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.