NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation

  1. Vincenzo A Gennarino
  2. Callison E Alcott
  3. Chun-An Chen
  4. Arindam Chaudhury
  5. Madelyn A Gillentine
  6. Jill A Rosenfeld
  7. Sumit Parikh
  8. James W Wheless
  9. Elizabeth R Roeder
  10. Dafne DG Horovitz
  11. Erin K Roney
  12. Janice L Smith
  13. Sau W Cheung
  14. Wei Li
  15. Joel R Neilson
  16. Christian P Schaaf
  17. Huda Y Zoghbi  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Texas Children's Hospital, United States
  3. Cleveland Clinic Children's Hospital, United States
  4. University of Tennessee Health Science Center, United States
  5. Instituto Nacional de Saude da Mulher, da Criança e do Adolescente Fernandes Figueira, Brazil

Abstract

The brain is sensitive to the dose of MECP2 such that small fluctuations in protein quantity lead to neuropsychiatric disease. Despite the importance of MeCP2 levels to brain function, little is know about its regulation. Here, we report eleven individuals with neuropsychiatric disease and copy-number variations spanning NUDT21, which encodes a subunit of pre-mRNA cleavage factor Im. Investigations of MECP2 mRNA and protein abundance in patient-derived lymphoblastoid cells from one NUDT21 deletion and three duplication cases show that NUDT21 regulates MeCP2 protein quantity. Elevated NUDT21 increases usage of the distal polyadenylation site in the MECP2 3'UTR, resulting in an enrichment of inefficiently translated long-mRNA isoforms. Importantly, normalization of NUDT21 via siRNA-mediated knockdown in duplication-patient lymphoblasts restores MeCP2 to normal levels. In this study, we identify NUDT21 as a novel candidate for intellectual disability and neuropsychiatric disease, and elucidate a mechanism of pathogenesis by MeCP2 dysregulation via altered alternative polyadenylation.

Article and author information

Author details

  1. Vincenzo A Gennarino

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Callison E Alcott

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  3. Chun-An Chen

    Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  4. Arindam Chaudhury

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Madelyn A Gillentine

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Jill A Rosenfeld

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Sumit Parikh

    Center for Child Neurology, Cleveland Clinic Children's Hospital, Cleveland, United States
    Competing interests
    No competing interests declared.
  8. James W Wheless

    Department of Pediatric Neurology, Neuroscience Institute and Tuberous Sclerosis Clinic, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    No competing interests declared.
  9. Elizabeth R Roeder

    Department of Pediatrics, Baylor College of Medicine, San Antonio, United States
    Competing interests
    No competing interests declared.
  10. Dafne DG Horovitz

    Depto de Genetica Medica, Instituto Nacional de Saude da Mulher, da Criança e do Adolescente Fernandes Figueira, Rio de Janeiro, Brazil
    Competing interests
    No competing interests declared.
  11. Erin K Roney

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  12. Janice L Smith

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  13. Sau W Cheung

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  14. Wei Li

    Division of Biostatistics, Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  15. Joel R Neilson

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  16. Christian P Schaaf

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  17. Huda Y Zoghbi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior editor, eLife.

Reviewing Editor

  1. Harry C Dietz, Johns Hopkins University School of Medicine, United States

Ethics

Human subjects: Following informed consent, approved by the InstitutionalReview Board for Human Subject Research at Baylor College of Medicine, we performed a comprehensive chart review of medical records and neuropsychological testing. A venous blood sample was provided by the probands in order to establish immortalized lymphoblastoid cell lines.

Version history

  1. Received: August 11, 2015
  2. Accepted: August 26, 2015
  3. Accepted Manuscript published: August 27, 2015 (version 1)
  4. Accepted Manuscript updated: August 28, 2015 (version 2)
  5. Version of Record published: September 29, 2015 (version 3)

Copyright

© 2015, Zoghbi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,693
    views
  • 651
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vincenzo A Gennarino
  2. Callison E Alcott
  3. Chun-An Chen
  4. Arindam Chaudhury
  5. Madelyn A Gillentine
  6. Jill A Rosenfeld
  7. Sumit Parikh
  8. James W Wheless
  9. Elizabeth R Roeder
  10. Dafne DG Horovitz
  11. Erin K Roney
  12. Janice L Smith
  13. Sau W Cheung
  14. Wei Li
  15. Joel R Neilson
  16. Christian P Schaaf
  17. Huda Y Zoghbi
(2015)
NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation
eLife 4:e10782.
https://doi.org/10.7554/eLife.10782

Share this article

https://doi.org/10.7554/eLife.10782

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.