Motion along the mental number line reveals shared representations for numerosity and space

  1. Caspar M Schwiedrzik  Is a corresponding author
  2. Benjamin Bernstein
  3. Lucia Melloni
  1. The Rockefeller University, United States
  2. Northwestern University, United States
  3. Max Planck Institute for Brain Research, Germany

Abstract

Perception of number and space are tightly intertwined. It has been proposed that this is due to "cortical recycling", where numerosity processing takes over circuits originally processing space. Do such "recycled" circuits retain their original functionality? Here, we investigate interactions between numerosity and motion direction, two functions that both localize to parietal cortex. We describe a new phenomenon in which visual motion direction adapts nonsymbolic numerosity perception, giving rise to a repulsive aftereffect: motion to the left adapts small numbers, leading to overestimation of numerosity, while motion to the right adapts large numbers, resulting in underestimation. The reference frame of this effect is spatiotopic. Together with the tuning properties of the effect this suggests that motion direction-numerosity cross-adaptation may occur in a homolog of area LIP. "Cortical recycling" thus expands but does not obliterate the functions originally performed by the recycled circuit, allowing for shared computations across domains.

Article and author information

Author details

  1. Caspar M Schwiedrzik

    Laboratory of Neural Systems, The Rockefeller University, New York, United States
    For correspondence
    cschwiedrz@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin Bernstein

    Department of Psychology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucia Melloni

    Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Hiram Brownell, Boston College, United States

Ethics

Human subjects: All subjects gave written informed consent before participation. All procedures were approved by The University Committee on Activities Involving Human Subjects at New York University.

Version history

  1. Received: August 12, 2015
  2. Accepted: January 14, 2016
  3. Accepted Manuscript published: January 15, 2016 (version 1)
  4. Version of Record published: February 10, 2016 (version 2)

Copyright

© 2016, Schwiedrzik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,452
    views
  • 293
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caspar M Schwiedrzik
  2. Benjamin Bernstein
  3. Lucia Melloni
(2016)
Motion along the mental number line reveals shared representations for numerosity and space
eLife 5:e10806.
https://doi.org/10.7554/eLife.10806

Share this article

https://doi.org/10.7554/eLife.10806

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.