Precise assembly of complex beta sheet topologies from de novo designed building blocks

  1. Indigo Chris King  Is a corresponding author
  2. James Gleixner
  3. Lindsey Doyle
  4. Alexandre Kuzin
  5. John F Hunt
  6. Rong Xiao
  7. Gaetano T Montelione
  8. Barry L Stoddard
  9. Frank DiMaio
  10. David Baker
  1. University of Washington, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. Columbia University, United States
  4. Rutgers, The State University of New Jersey, United States

Abstract

Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evolution. Here we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by insertion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand-helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets during natural protein evolution.

Article and author information

Author details

  1. Indigo Chris King

    Molecular Engineering and Sciences Building, University of Washington, Seattle, United States
    For correspondence
    chrisk1@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. James Gleixner

    Institute for Protein Design, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindsey Doyle

    Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandre Kuzin

    Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John F Hunt

    Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rong Xiao

    Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gaetano T Montelione

    Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Struc-tural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Barry L Stoddard

    Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Frank DiMaio

    Institute for Protein Design, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David Baker

    Institute for Protein Design, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Version history

  1. Received: August 20, 2015
  2. Accepted: December 8, 2015
  3. Accepted Manuscript published: December 9, 2015 (version 1)
  4. Version of Record published: January 20, 2016 (version 2)

Copyright

© 2015, King et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,155
    views
  • 497
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Indigo Chris King
  2. James Gleixner
  3. Lindsey Doyle
  4. Alexandre Kuzin
  5. John F Hunt
  6. Rong Xiao
  7. Gaetano T Montelione
  8. Barry L Stoddard
  9. Frank DiMaio
  10. David Baker
(2015)
Precise assembly of complex beta sheet topologies from de novo designed building blocks
eLife 4:e11012.
https://doi.org/10.7554/eLife.11012

Share this article

https://doi.org/10.7554/eLife.11012

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.