Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

  1. Candice L Wike
  2. Hillary K Graves
  3. Reva Hawkins
  4. Matthew D Gibson
  5. Michelle B Ferdinand
  6. Tao Zhang
  7. Zhihong Chen
  8. Damien F Hudson
  9. Jennifer J Ottesen
  10. Michael G Poirier
  11. Jill Schumacher
  12. Jessica K Tyler  Is a corresponding author
  1. University of Texas MD Anderson Cancer Center, United States
  2. The Ohio State University, United States
  3. Royal Children's Hospital, Australia
  4. Ohio State University, United States
  5. University of Texas MD Anderson cancer center, United States
  6. Weill Cornell Medicine, United States

Abstract

Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation.

Article and author information

Author details

  1. Candice L Wike

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  2. Hillary K Graves

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  3. Reva Hawkins

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  4. Matthew D Gibson

    Department of Physics, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  5. Michelle B Ferdinand

    Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  6. Tao Zhang

    Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
    Competing interests
    No competing interests declared.
  7. Zhihong Chen

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  8. Damien F Hudson

    Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
    Competing interests
    No competing interests declared.
  9. Jennifer J Ottesen

    Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  10. Michael G Poirier

    Department of Physics, Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  11. Jill Schumacher

    Department of Genetics, University of Texas MD Anderson cancer center, Houston, United States
    Competing interests
    No competing interests declared.
  12. Jessica K Tyler

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    For correspondence
    jet2021@med.cornell.edu
    Competing interests
    Jessica K Tyler, Reviewing editor, eLife.

Reviewing Editor

  1. Peter Verrijzer, Erasmus University Medical Center, Netherlands

Version history

  1. Received: September 9, 2015
  2. Accepted: February 15, 2016
  3. Accepted Manuscript published: February 16, 2016 (version 1)
  4. Version of Record published: March 9, 2016 (version 2)

Copyright

© 2016, Wike et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,122
    views
  • 872
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Candice L Wike
  2. Hillary K Graves
  3. Reva Hawkins
  4. Matthew D Gibson
  5. Michelle B Ferdinand
  6. Tao Zhang
  7. Zhihong Chen
  8. Damien F Hudson
  9. Jennifer J Ottesen
  10. Michael G Poirier
  11. Jill Schumacher
  12. Jessica K Tyler
(2016)
Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis
eLife 5:e11402.
https://doi.org/10.7554/eLife.11402

Share this article

https://doi.org/10.7554/eLife.11402

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.