Allosteric modulation in monomers and oligomers of a G protein-coupled receptor

  1. Rabindra V Shivnaraine  Is a corresponding author
  2. Brendan Kelly
  3. Krishana S Sankar
  4. Dar'ya S Redka
  5. Yi Rang Han
  6. Fei Huang
  7. Gwendolynne Elmslie
  8. Daniel Pinto
  9. Yuchong Li
  10. Jonathan V Rocheleau
  11. Claudiu C Gradinaru
  12. John Ellis
  13. James W Wells
  1. Stanford University School of Medicine, United States
  2. Stanford University, United States
  3. University of Toronto, Canada
  4. Hershey Medical Center, United States

Abstract

The M2 muscarinic receptor is the prototypic model of allostery in GPCRs, yet the molecular and the supramolecular determinants of such effects are unknown. Monomers and oligomers of the M2 muscarinic receptor therefore have been compared to identify those allosteric properties that are gained in oligomers. Allosteric interactions were monitored by means of a FRET-based sensor of conformation at the allosteric site and in pharmacological assays involving mutants engineered to preclude intramolecular effects. Electrostatic, steric, and conformational determinants of allostery at the atomic level were examined in molecular dynamics simulations. Allosteric effects in monomers were exclusively negative and derived primarily from intramolecular electrostatic repulsion between the allosteric and orthosteric ligands. Allosteric effects in oligomers could be positive or negative, depending upon the allosteric-orthosteric pair, and they arose from interactions within and between the constituent protomers. The complex behavior of oligomers is characteristic of muscarinic receptors in myocardial preparations.

Article and author information

Author details

  1. Rabindra V Shivnaraine

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rvshiv@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Brendan Kelly

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Krishana S Sankar

    Department of Physiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dar'ya S Redka

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Yi Rang Han

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Fei Huang

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Gwendolynne Elmslie

    Departments of Psychiatry and Pharmacology, Hershey Medical Center, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel Pinto

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuchong Li

    Department of Physics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan V Rocheleau

    Department of Physiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Claudiu C Gradinaru

    Department of Physics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. John Ellis

    Departments of Psychiatry and Pharmacology, Hershey Medical Center, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. James W Wells

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Werner Kühlbrandt, Max Planck Institute of Biophysics, Germany

Version history

  1. Received: September 17, 2015
  2. Accepted: April 30, 2016
  3. Accepted Manuscript published: May 6, 2016 (version 1)
  4. Version of Record published: June 9, 2016 (version 2)

Copyright

© 2016, Shivnaraine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,352
    views
  • 594
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rabindra V Shivnaraine
  2. Brendan Kelly
  3. Krishana S Sankar
  4. Dar'ya S Redka
  5. Yi Rang Han
  6. Fei Huang
  7. Gwendolynne Elmslie
  8. Daniel Pinto
  9. Yuchong Li
  10. Jonathan V Rocheleau
  11. Claudiu C Gradinaru
  12. John Ellis
  13. James W Wells
(2016)
Allosteric modulation in monomers and oligomers of a G protein-coupled receptor
eLife 5:e11685.
https://doi.org/10.7554/eLife.11685

Share this article

https://doi.org/10.7554/eLife.11685

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.