The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses

  1. Xabier Agirrezabala
  2. Eduardo Méndez-López
  3. Gorka Lasso
  4. M Amelia Sánchez-Pina
  5. Miguel Aranda
  6. Mikel Valle  Is a corresponding author
  1. Center for Cooperative Research in Biosciences, Spain
  2. Centro de Edafología y Biología Aplicada del Segura, Spain
  3. Columbia University, United States

Abstract

Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies- a flexuous, helical rod or a loose ribonucleoprotein (RNP). The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses.

Article and author information

Author details

  1. Xabier Agirrezabala

    Structural Biology Unit, Center for Cooperative Research in Biosciences, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Eduardo Méndez-López

    Centro de Edafología y Biología Aplicada del Segura, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Gorka Lasso

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. M Amelia Sánchez-Pina

    Centro de Edafología y Biología Aplicada del Segura, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Miguel Aranda

    Centro de Edafología y Biología Aplicada del Segura, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Mikel Valle

    Structural Biology Unit, Center for Cooperative Research in Biosciences, Derio, Spain
    For correspondence
    mvalle@cicbiogune.es
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Stephen C Harrison, Harvard Medical School, United States

Version history

  1. Received: September 22, 2015
  2. Accepted: December 15, 2015
  3. Accepted Manuscript published: December 16, 2015 (version 1)
  4. Accepted Manuscript updated: December 17, 2015 (version 2)
  5. Version of Record published: January 25, 2016 (version 3)

Copyright

© 2015, Agirrezabala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,861
    views
  • 548
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xabier Agirrezabala
  2. Eduardo Méndez-López
  3. Gorka Lasso
  4. M Amelia Sánchez-Pina
  5. Miguel Aranda
  6. Mikel Valle
(2015)
The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses
eLife 4:e11795.
https://doi.org/10.7554/eLife.11795

Share this article

https://doi.org/10.7554/eLife.11795

Further reading

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.