Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval

  1. Vanessa Lux
  2. Erika Atucha
  3. Takashi Kitsukawa
  4. Magdalena M Sauvage  Is a corresponding author
  1. Ruhr University Bochum, Germany
  2. Osaka University, Japan

Abstract

Whether retrieval still depends on the hippocampus as memories age or relies then on cortical areas remains a major controversy. Despite evidence for a functional segregation between CA1, CA3 and parahippocampal areas, their specific role within this frame is unclear. Especially, the contribution of CA3 is questionable as very remote memories might be too degraded to be used for pattern completion. To identify the specific role of these areas, we imaged brain activity in mice during retrieval of recent, early remote and very remote fear memories by detecting the immediate-early gene Arc. Investigating correlates of the memory trace over an extended period allowed us to report that, in contrast to CA1, CA3 is no longer recruited in very remote retrieval. Conversely, we showed that parahippocampal areas are then maximally engaged. These results suggest a shift from a greater contribution of the trisynaptic loop to the temporoammonic pathway for retrieval.

Article and author information

Author details

  1. Vanessa Lux

    Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Erika Atucha

    Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Takashi Kitsukawa

    Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Magdalena M Sauvage

    Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany
    For correspondence
    magdalena.sauvage@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Upinder S Bhalla, National Centre for Biological Sciences, India

Ethics

Animal experimentation: All procedures were approved by the Ruhr-Universität Bochum Institutional Animal Use Committee and the LANUV (8.87-51.04.20.09.323)

Version history

  1. Received: September 24, 2015
  2. Accepted: February 9, 2016
  3. Accepted Manuscript published: February 12, 2016 (version 1)
  4. Version of Record published: March 15, 2016 (version 2)

Copyright

© 2016, Lux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,707
    views
  • 722
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vanessa Lux
  2. Erika Atucha
  3. Takashi Kitsukawa
  4. Magdalena M Sauvage
(2016)
Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval
eLife 5:e11862.
https://doi.org/10.7554/eLife.11862

Share this article

https://doi.org/10.7554/eLife.11862

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.