Hippocampal ensemble dynamics timestamp events in long-term memory

  1. Alon Rubin
  2. Nitzan Geva
  3. Liron Sheintuch
  4. Yaniv Ziv  Is a corresponding author
  1. Weizmann Institute of Science, Israel

Abstract

The capacity to remember temporal relationships between different events is essential to episodic memory, but little is currently known about its underlying mechanisms. We performed time-lapse imaging of thousands of neurons over weeks in the hippocampal CA1 of mice as they repeatedly visited two distinct environments. Longitudinal analysis exposed ongoing environment-independent evolution of episodic representations, despite stable place field locations and constant remapping between the two environments. These dynamics time-stamped experienced events via neuronal ensembles that had cellular composition and activity patterns unique to specific points in time. Temporally close episodes shared a common timestamp regardless of the spatial context in which they occurred. Temporally remote episodes had distinct timestamps, even if they occurred within the same spatial context. Our results suggest that days-scale hippocampal ensemble dynamics could support the formation of a mental timeline in which experienced events could be mnemonically associated or dissociated based on their temporal distance.

Article and author information

Author details

  1. Alon Rubin

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  2. Nitzan Geva

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  3. Liron Sheintuch

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  4. Yaniv Ziv

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    yaniv.ziv@weizmann.ac.il
    Competing interests
    Yaniv Ziv, Has ownership interests at Inscopix Inc.

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Ethics

Animal experimentation: All animal work was approved by the Weizmann Institute institutional animal care and use committee (IACUC protocol 18030515-3).

Version history

  1. Received: October 12, 2015
  2. Accepted: December 17, 2015
  3. Accepted Manuscript published: December 18, 2015 (version 1)
  4. Version of Record published: January 28, 2016 (version 2)

Copyright

© 2015, Rubin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,045
    views
  • 2,254
    downloads
  • 208
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alon Rubin
  2. Nitzan Geva
  3. Liron Sheintuch
  4. Yaniv Ziv
(2015)
Hippocampal ensemble dynamics timestamp events in long-term memory
eLife 4:e12247.
https://doi.org/10.7554/eLife.12247

Share this article

https://doi.org/10.7554/eLife.12247

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.