Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep

  1. Michal Turek
  2. Judith Besseling
  3. Jan-Philipp Spies
  4. Sabine König
  5. Henrik Bringmann  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany

Abstract

Sleep is an essential behavioral state. It is induced by conserved sleep-active neurons that express GABA. However, little is known about how sleep neuron function is determined and how sleep neurons change physiology and behavior systemically. Here, we investigated sleep in C. elegans, which is induced by the single sleep-active neuron RIS. We found that the transcription factor LIM-6, which specifies GABAergic function, in parallel determines sleep neuron function through the expression of APTF-1, which specifies the expression of FLP-11 neuropeptides. Surprisingly FLP-11, and not GABA, is the major component that determines the sleep-promoting function of RIS. FLP-11 is constantly expressed in RIS. At sleep onset RIS depolarizes and releases FLP-11 to induce a systemic sleep state.

Article and author information

Author details

  1. Michal Turek

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Judith Besseling

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan-Philipp Spies

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sabine König

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Henrik Bringmann

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    For correspondence
    henrik.bringmann@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Version history

  1. Received: October 21, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 7, 2016 (version 1)
  4. Version of Record published: March 16, 2016 (version 2)

Copyright

© 2016, Turek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,572
    views
  • 717
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michal Turek
  2. Judith Besseling
  3. Jan-Philipp Spies
  4. Sabine König
  5. Henrik Bringmann
(2016)
Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep
eLife 5:e12499.
https://doi.org/10.7554/eLife.12499

Share this article

https://doi.org/10.7554/eLife.12499

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.