Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection

  1. Eleanor Gaunt
  2. Helen M Wise
  3. Huayu Zhang
  4. Lian N Lee
  5. Nicky J Atkinson
  6. Marlynne Quigg Nicol
  7. Andrew J Highton
  8. Paul Klenerman
  9. Philippa M Beard
  10. Bernadette M Dutia
  11. Paul Digard
  12. Peter Simmonds  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Heriot Watt University, United Kingdom
  3. University of Oxford, United Kingdom

Abstract

Previously, we demonstrated that frequencies of CpG and UpA dinucleotides profoundly influence the replication ability of echovirus 7 (Tulloch et al., 2014). Here, we show that that influenza A virus (IAV) with maximised frequencies of these dinucleotides in segment 5 showed comparable attenuation in cell culture compared to unmodified virus and a permuted control (CDLR). Attenuation was also manifested in vivo, with 10-100 fold reduced viral loads in lungs of mice infected with 200PFU of CpG-high and UpA-high mutants. However, both induced powerful inflammatory cytokine and adaptive (T cell and neutralising antibody) responses disproportionate to their replication. CpG-high infected mice also showed markedly reduced clinical severity, minimal weight loss and reduced immmunopathology in lung, yet sterilising immunity to lethal dose WT challenge was achieved after low dose (20PFU) pre-immunisation with this mutant. Increasing CpG dinucleotide frequencies represents a generic and potentially highly effective method for generating safe, highly immunoreactive vaccines.

Article and author information

Author details

  1. Eleanor Gaunt

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Helen M Wise

    Department of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Huayu Zhang

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lian N Lee

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicky J Atkinson

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marlynne Quigg Nicol

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew J Highton

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul Klenerman

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Philippa M Beard

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Bernadette M Dutia

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Digard

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Peter Simmonds

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Peter.Simmonds@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marc Lipsitch, Harvard School of Public Health, United States

Ethics

Animal experimentation: All animal experiments were carried out under the authority of a UK Home Office Project Licence (60/4479) within the terms and conditions of the strict regulations of the UK Home Office 'Animals (scientific procedures) Act 1986' and the Code of Practice for the housing and care of animals bred, supplied or used for scientific purposes.

Version history

  1. Received: November 1, 2015
  2. Accepted: February 15, 2016
  3. Accepted Manuscript published: February 16, 2016 (version 1)
  4. Accepted Manuscript updated: February 17, 2016 (version 2)
  5. Version of Record published: March 11, 2016 (version 3)

Copyright

© 2016, Gaunt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,240
    views
  • 665
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eleanor Gaunt
  2. Helen M Wise
  3. Huayu Zhang
  4. Lian N Lee
  5. Nicky J Atkinson
  6. Marlynne Quigg Nicol
  7. Andrew J Highton
  8. Paul Klenerman
  9. Philippa M Beard
  10. Bernadette M Dutia
  11. Paul Digard
  12. Peter Simmonds
(2016)
Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection
eLife 5:e12735.
https://doi.org/10.7554/eLife.12735

Share this article

https://doi.org/10.7554/eLife.12735

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Bing Liang Alvin Chew, AN Qi Ngoh ... Dahai Luo
    Research Article

    Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.

    1. Microbiology and Infectious Disease
    Swagata Bose, Satya Ranjan Sahu ... Narottam Acharya
    Research Article

    Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and β-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.