Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation

  1. Sean W Fanning
  2. Christopher G Mayne
  3. Venkatasubramanian Dharmarajan
  4. Kathryn E Carlson
  5. Teresa A Martin
  6. Scott J Novick
  7. Weiyi Toy
  8. Bradley Green
  9. Srinivas Panchamukhi
  10. Benita S Katzenellenbogen
  11. Emad Tajkhorshid
  12. Patrick R Griffin
  13. Yang Shen
  14. Sarat Chandarlapaty
  15. John A Katzenellenbogen
  16. Geoffrey L Griffin  Is a corresponding author
  1. University of Chicago, United States
  2. University of Illinois at Urbana-Champaign, United States
  3. The Scripps Research Institute-Scripps Florida, United States
  4. The Scripps Research Institute, United States
  5. Memorial Sloan Kettering Cancer Center, United States
  6. University of Illinois Urbana-Champaign, United States
  7. Texas A&M University, United States
  8. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Somatic mutations in the estrogen receptor alpha (ERα) gene (ESR1), especially Y537S and D538G, have been linked to acquired resistance to endocrine therapies. Cell based studies demonstrated that these mutants confer ERα constitutive activity and antiestrogen resistance and suggest that ligand-binding domain dysfunction leads to endocrine therapy resistance. Here, we integrate biophysical and structural biology data to reveal how these mutations lead to a constitutively active and antiestrogen resistant ERα. We show that these mutant ERs recruit coactivator in the absence of hormone while their affinities for estrogen agonist (estradiol) and antagonist (4-hydroxytamoxifen) are reduced. Further, they confer antiestrogen resistance by altering the conformational dynamics of the loop connecting Helix 11 and Helix 12 in the ligand-binding domain of ERα, which leads to a stabilized agonist state and an altered antagonist state that resists inhibition.

Article and author information

Author details

  1. Sean W Fanning

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher G Mayne

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Venkatasubramanian Dharmarajan

    Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kathryn E Carlson

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Teresa A Martin

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott J Novick

    Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Weiyi Toy

    Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bradley Green

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Srinivas Panchamukhi

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Benita S Katzenellenbogen

    Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Emad Tajkhorshid

    Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Patrick R Griffin

    Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yang Shen

    Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Sarat Chandarlapaty

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. John A Katzenellenbogen

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Geoffrey L Griffin

    Department of Molecular Therapeutics, University of Chicago, Jupiter, United States
    For correspondence
    ggreene@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Peter Tontonoz, Howard Hughes Medical Institute, University of California, Los Angeles, United States

Version history

  1. Received: November 3, 2015
  2. Accepted: January 31, 2016
  3. Accepted Manuscript published: February 2, 2016 (version 1)
  4. Accepted Manuscript updated: February 3, 2016 (version 2)
  5. Version of Record published: March 24, 2016 (version 3)
  6. Version of Record updated: September 18, 2018 (version 4)

Copyright

© 2016, Fanning et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,540
    views
  • 1,634
    downloads
  • 203
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sean W Fanning
  2. Christopher G Mayne
  3. Venkatasubramanian Dharmarajan
  4. Kathryn E Carlson
  5. Teresa A Martin
  6. Scott J Novick
  7. Weiyi Toy
  8. Bradley Green
  9. Srinivas Panchamukhi
  10. Benita S Katzenellenbogen
  11. Emad Tajkhorshid
  12. Patrick R Griffin
  13. Yang Shen
  14. Sarat Chandarlapaty
  15. John A Katzenellenbogen
  16. Geoffrey L Griffin
(2016)
Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation
eLife 5:e12792.
https://doi.org/10.7554/eLife.12792

Share this article

https://doi.org/10.7554/eLife.12792

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.