Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin

  1. Haiyang Liu
  2. Jianchao Li
  3. Manmeet H Raval
  4. Ningning Yao
  5. Xiaoying Deng
  6. Qing Lu
  7. Si Nie
  8. Wei Feng
  9. Jun Wan
  10. Christopher M Yengo
  11. Wei Liu
  12. Mingjie Zhang  Is a corresponding author
  1. Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
  2. Hong Kong University of Science and Technology, China
  3. Pennsylvania State University College of Medicine, United States
  4. Chinese Academy of Sciences, China

Abstract

Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1.

Article and author information

Author details

  1. Haiyang Liu

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  2. Jianchao Li

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  3. Manmeet H Raval

    Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, United States
    Competing interests
    No competing interests declared.
  4. Ningning Yao

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  5. Xiaoying Deng

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Qing Lu

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    No competing interests declared.
  7. Si Nie

    National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  8. Wei Feng

    National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  9. Jun Wan

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  10. Christopher M Yengo

    Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, United States
    Competing interests
    No competing interests declared.
  11. Wei Liu

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  12. Mingjie Zhang

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    For correspondence
    mzhang@ust.hk
    Competing interests
    Mingjie Zhang, Reviewing editor, eLife.

Reviewing Editor

  1. Cynthia Wolberger, Johns Hopkins University, United States

Version history

  1. Received: November 5, 2015
  2. Accepted: January 18, 2016
  3. Accepted Manuscript published: January 19, 2016 (version 1)
  4. Version of Record published: February 5, 2016 (version 2)
  5. Version of Record updated: July 6, 2016 (version 3)

Copyright

© 2016, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,163
    views
  • 496
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haiyang Liu
  2. Jianchao Li
  3. Manmeet H Raval
  4. Ningning Yao
  5. Xiaoying Deng
  6. Qing Lu
  7. Si Nie
  8. Wei Feng
  9. Jun Wan
  10. Christopher M Yengo
  11. Wei Liu
  12. Mingjie Zhang
(2016)
Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin
eLife 5:e12856.
https://doi.org/10.7554/eLife.12856

Share this article

https://doi.org/10.7554/eLife.12856

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.