Abstract

Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli.

Article and author information

Author details

  1. Adam M Corrigan

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Edward Tunnacliffe

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Danielle Cannon

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan R Chubb

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    j.chubb@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Version history

  1. Received: November 14, 2015
  2. Accepted: February 19, 2016
  3. Accepted Manuscript published: February 20, 2016 (version 1)
  4. Version of Record published: March 29, 2016 (version 2)

Copyright

© 2016, Corrigan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,977
    views
  • 1,752
    downloads
  • 148
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam M Corrigan
  2. Edward Tunnacliffe
  3. Danielle Cannon
  4. Jonathan R Chubb
(2016)
A continuum model of transcriptional bursting
eLife 5:e13051.
https://doi.org/10.7554/eLife.13051

Share this article

https://doi.org/10.7554/eLife.13051

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.