Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II

  1. Moitrayee Bhattacharyya
  2. Margaret M Stratton
  3. Catherine C Going
  4. Ethan D McSpadden
  5. Yongjian Huang
  6. Anna C Susa
  7. Anna Elleman
  8. Yumeng Melody Cao
  9. Nishant Pappireddi
  10. Pawel Burkhardt
  11. Christine L Gee
  12. Tiago Barros
  13. Howard Schulman
  14. Evan R Williams
  15. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Massachusetts at Amherst, United States
  3. Stanford University, United States
  4. Smith College, United States
  5. Marine Biological Association, United States
  6. Allosteros Therapeutics, United States

Abstract

Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin(CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.

Article and author information

Author details

  1. Moitrayee Bhattacharyya

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Margaret M Stratton

    Department of Biochemistry and Molecular Biology, University of Massachusetts at Amherst, Amherst, United States
    Competing interests
    No competing interests declared.
  3. Catherine C Going

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Ethan D McSpadden

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Yongjian Huang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Anna C Susa

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Anna Elleman

    Department of Chemistry, Stanford University, Palo Alto, United States
    Competing interests
    No competing interests declared.
  8. Yumeng Melody Cao

    Department of Physics, Smith College, Northampton, United States
    Competing interests
    No competing interests declared.
  9. Nishant Pappireddi

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Pawel Burkhardt

    The Laboratory, Marine Biological Association, Plymouth, United States
    Competing interests
    No competing interests declared.
  11. Christine L Gee

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  12. Tiago Barros

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  13. Howard Schulman

    Allosteros Therapeutics, Sunnyvale, United States
    Competing interests
    No competing interests declared.
  14. Evan R Williams

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  15. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    kuriyan@berkeley.edu
    Competing interests
    John Kuriyan, Senior editor, eLife.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Version history

  1. Received: November 30, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 7, 2016 (version 1)
  4. Version of Record published: May 6, 2016 (version 2)

Copyright

© 2016, Bhattacharyya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,053
    views
  • 1,235
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moitrayee Bhattacharyya
  2. Margaret M Stratton
  3. Catherine C Going
  4. Ethan D McSpadden
  5. Yongjian Huang
  6. Anna C Susa
  7. Anna Elleman
  8. Yumeng Melody Cao
  9. Nishant Pappireddi
  10. Pawel Burkhardt
  11. Christine L Gee
  12. Tiago Barros
  13. Howard Schulman
  14. Evan R Williams
  15. John Kuriyan
(2016)
Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II
eLife 5:e13405.
https://doi.org/10.7554/eLife.13405

Share this article

https://doi.org/10.7554/eLife.13405

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Eva Pyrihová, Martin S King ... Edmund RS Kunji
    Research Article

    Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.

    1. Biochemistry and Chemical Biology
    Zheng Ruan, Junuk Lee ... Wei Lü
    Research Article

    Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above—which were used to identify endogenous PANX1 phosphorylation at these two sites—are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.