Abstract

How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.

Article and author information

Author details

  1. Andrea Leo

    Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Giacomo Handjaras

    Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Matteo Bianchi

    Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Hamal Marino

    Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Marco Gabiccini

    Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea Guidi

    Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Enzo Pasquale Scilingo

    Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Pietro Pietrini

    Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Antonio Bicchi

    Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Marco Santello

    School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Emiliano Ricciardi

    Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
    For correspondence
    emiliano.ricciardi@bioclinica.unipi.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jody C Culham, University of Western Ontario, Canada

Ethics

Human subjects: This study was approved by the Ethical Committee at the University of Pisa, Italy. Participants received a detailed explanation of all the study procedures and risks and provided a written informed consent according to the protocol approved by the University of Pisa Ethical Committee (1616/2003). All participants retained the right to withdraw from the study at any moment.

Version history

  1. Received: December 9, 2015
  2. Accepted: February 13, 2016
  3. Accepted Manuscript published: February 15, 2016 (version 1)
  4. Version of Record published: February 29, 2016 (version 2)

Copyright

© 2016, Leo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,053
    views
  • 992
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Leo
  2. Giacomo Handjaras
  3. Matteo Bianchi
  4. Hamal Marino
  5. Marco Gabiccini
  6. Andrea Guidi
  7. Enzo Pasquale Scilingo
  8. Pietro Pietrini
  9. Antonio Bicchi
  10. Marco Santello
  11. Emiliano Ricciardi
(2016)
A synergy-based hand control is encoded in human motor cortical areas
eLife 5:e13420.
https://doi.org/10.7554/eLife.13420

Share this article

https://doi.org/10.7554/eLife.13420

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.