Body side-specific control of motor activity during turning in a walking animal

Abstract

Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task.

Article and author information

Author details

  1. Matthias Gruhn

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    For correspondence
    mgruhn@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Philipp Rosenbaum

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Till Bockemühl

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ansgar Büschges

    Department of Animal Physiology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: December 14, 2015
  2. Accepted: April 25, 2016
  3. Accepted Manuscript published: April 27, 2016 (version 1)
  4. Version of Record published: June 6, 2016 (version 2)

Copyright

© 2016, Gruhn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,394
    views
  • 344
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthias Gruhn
  2. Philipp Rosenbaum
  3. Till Bockemühl
  4. Ansgar Büschges
(2016)
Body side-specific control of motor activity during turning in a walking animal
eLife 5:e13799.
https://doi.org/10.7554/eLife.13799

Share this article

https://doi.org/10.7554/eLife.13799

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.