A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging

  1. Nicholas James Sofroniew
  2. Daniel Flickinger
  3. Jonathon King
  4. Karel Svoboda  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Vidrio Technologies, United States

Abstract

Imaging is used to map activity across populations of neurons. Microscopes with cellular resolution have small (< 1 millimeter) fields of view and cannot simultaneously image activity distributed across multiple brain areas. Typical large field of view microscopes do not resolve single cells, especially in the axial dimension. We developed a 2-photon random access mesoscope (2p-RAM) that allows high-resolution imaging anywhere within a volume spanning multiple brain areas (Φ 5 mm x 1 mm cylinder). 2p-RAM resolution is near diffraction limited (lateral, 0.66 μm, axial 4.09 μm at the center; excitation wavelength = 970 nm; numerical aperture = 0.6) over a large range of excitation wavelengths. A fast three-dimensional scanning system allows efficient sampling of neural activity in arbitrary regions of interest across the entire imaging volume. We illustrate the use of the 2p-RAM by imaging neural activity in multiple, non-contiguous brain areas in transgenic mice expressing protein calcium sensors.

Article and author information

Author details

  1. Nicholas James Sofroniew

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  2. Daniel Flickinger

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Jonathon King

    Vidrio Technologies, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Karel Svoboda

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    svobodak@janelia.hhmi.org
    Competing interests
    Karel Svoboda, Reviewing editor, eLife.

Reviewing Editor

  1. Fred Rieke, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: All procedures were in accordance with protocols approved by the Janelia Research Campus Institutional Animal Care and Use Committee. IACUC 14-115.

Version history

  1. Received: January 16, 2016
  2. Accepted: June 13, 2016
  3. Accepted Manuscript published: June 14, 2016 (version 1)
  4. Version of Record published: July 19, 2016 (version 2)

Copyright

© 2016, Sofroniew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 26,933
    views
  • 4,009
    downloads
  • 483
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas James Sofroniew
  2. Daniel Flickinger
  3. Jonathon King
  4. Karel Svoboda
(2016)
A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging
eLife 5:e14472.
https://doi.org/10.7554/eLife.14472

Share this article

https://doi.org/10.7554/eLife.14472

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.