Abstract

TP53 is conventionally thought to prevent cancer formation and progression to metastasis, while mutant TP53 has transforming activities. However, in the clinic, TP53 mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of TP53 mutation status. Δ133p53β increases risk of cancer recurrence and death in breast cancer patients. Furthermore Δ133p53β is critical to define invasiveness in a panel of breast and colon cell lines, expressing WT or mutant TP53. Endogenous mutant Δ133p53β depletion prevents invasiveness without affecting mutant full-length p53 protein expression. Mechanistically WT and mutant Δ133p53β induces EMT. Our findings provide explanations to 2 long-lasting and important clinical conundrums: how WT TP53 can promote cancer cell invasion and reciprocally why mutant TP53 gene does not systematically induce cancer progression.

Article and author information

Author details

  1. Gilles Gadea

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikola Arsic

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Kenneth Fernandes

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra Diot

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sébastien M Joruiz

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Samer Abdallah

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Valerie Meuray

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Stéphanie Vinot

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Christelle Anguille

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Judit Remenyi

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Marie P Khoury

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Philip R Quinlan

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Colin A Purdie

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Lee B Jordan

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Frances V Fuller-Pace

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5859-2932
  16. Marion de Toledo

    Université Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Maïlys Cren

    Université Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  18. Alastair M Thompson

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Jean-Christophe Bourdon

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    For correspondence
    j.bourdon@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  20. Pierre Roux

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    For correspondence
    pierre.roux@crbm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0671-5413

Funding

Breast Cancer Campaign (2012MaySF127)

  • Jean-Christophe Bourdon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado School of Medicine, United States

Ethics

Human subjects: Samples were examined following Local Research EthicsCommittee approval under delegated authority by the Tayside Tissue Bank(www.taysidetissuebank.org).

Version history

  1. Received: January 29, 2016
  2. Accepted: September 13, 2016
  3. Accepted Manuscript published: September 15, 2016 (version 1)
  4. Version of Record published: October 17, 2016 (version 2)
  5. Version of Record updated: March 30, 2017 (version 3)

Copyright

© 2016, Gadea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,015
    views
  • 607
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gilles Gadea
  2. Nikola Arsic
  3. Kenneth Fernandes
  4. Alexandra Diot
  5. Sébastien M Joruiz
  6. Samer Abdallah
  7. Valerie Meuray
  8. Stéphanie Vinot
  9. Christelle Anguille
  10. Judit Remenyi
  11. Marie P Khoury
  12. Philip R Quinlan
  13. Colin A Purdie
  14. Lee B Jordan
  15. Frances V Fuller-Pace
  16. Marion de Toledo
  17. Maïlys Cren
  18. Alastair M Thompson
  19. Jean-Christophe Bourdon
  20. Pierre Roux
(2016)
TP53 drives invasion through expression of its Δ133p53β variant
eLife 5:e14734.
https://doi.org/10.7554/eLife.14734

Share this article

https://doi.org/10.7554/eLife.14734

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).