Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy

  1. Natalie M Clark
  2. Elizabeth Hinde
  3. Cara M Winter
  4. Adam P Fisher
  5. Giuseppe Crosti
  6. Ikram Blilou
  7. Enrico Gratton
  8. Philip N Benfey  Is a corresponding author
  9. Rosangela Sozzani
  1. North Carolina State University, United States
  2. University of California, Irvine, United States
  3. Howard Hughes Medical Institute, Duke University, United States
  4. Wageningen University, Netherlands

Abstract

To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hours. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

Article and author information

Author details

  1. Natalie M Clark

    Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Hinde

    Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cara M Winter

    Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam P Fisher

    Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Giuseppe Crosti

    Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ikram Blilou

    Plant Developmental Biology, Wageningen University, Wageningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Enrico Gratton

    Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Philip N Benfey

    Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
    For correspondence
    philip.benfey@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Rosangela Sozzani

    Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Version history

  1. Received: January 27, 2016
  2. Accepted: June 10, 2016
  3. Accepted Manuscript published: June 11, 2016 (version 1)
  4. Version of Record published: July 15, 2016 (version 2)

Copyright

© 2016, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,989
    views
  • 1,113
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natalie M Clark
  2. Elizabeth Hinde
  3. Cara M Winter
  4. Adam P Fisher
  5. Giuseppe Crosti
  6. Ikram Blilou
  7. Enrico Gratton
  8. Philip N Benfey
  9. Rosangela Sozzani
(2016)
Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy
eLife 5:e14770.
https://doi.org/10.7554/eLife.14770

Share this article

https://doi.org/10.7554/eLife.14770

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Tobias Weinberger, Messerer Denise ... Christian Schulz
    Research Article

    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.