Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP

  1. Heather L Smith
  2. Jennifer N Bourne
  3. Guan Cao
  4. Michael A Chirillo
  5. Linnaea E Ostroff
  6. Deborah J Watson
  7. Kristen M Harris  Is a corresponding author
  1. University of Texas at Austin, United States
  2. University of Colorado Denver, United States
  3. New York University, United States
  4. QPS, LLC, United States
  5. The University of Texas at Austin, United States

Abstract

Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 minutes after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults.

Article and author information

Author details

  1. Heather L Smith

    Department of Neuroscience, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer N Bourne

    Department of Cell and Developmental Biology, University of Colorado Denver, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guan Cao

    Department of Neuroscience, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6211-5872
  4. Michael A Chirillo

    Department of Neuroscience, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Linnaea E Ostroff

    Center for Neural Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Deborah J Watson

    QPS, LLC, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kristen M Harris

    Department of Neuroscience, The University of Texas at Austin, Austin, United States
    For correspondence
    kmh2249@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1943-4744

Funding

National Institutes of Health (NS201184)

  • Kristen M Harris

Texas Emerging Technology Fund

  • Kristen M Harris

National Institutes of Health (MH095980)

  • Kristen M Harris

National Institutes of Health (NS074644)

  • Kristen M Harris

National Institutes of Health (MH096459)

  • Deborah J Watson

Brain Research Foundation

  • Kristen M Harris

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Häusser, University College London, United Kingdom

Version history

  1. Received: February 22, 2016
  2. Accepted: December 16, 2016
  3. Accepted Manuscript published: December 19, 2016 (version 1)
  4. Version of Record published: January 13, 2017 (version 2)

Copyright

© 2016, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,145
    views
  • 758
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heather L Smith
  2. Jennifer N Bourne
  3. Guan Cao
  4. Michael A Chirillo
  5. Linnaea E Ostroff
  6. Deborah J Watson
  7. Kristen M Harris
(2016)
Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP
eLife 5:e15275.
https://doi.org/10.7554/eLife.15275

Share this article

https://doi.org/10.7554/eLife.15275

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.