Abstract

The hand area of the primary somatosensory cortex contains detailed finger topography, thought to be shaped and maintained by daily life experience. Here we utilise phantom sensations and ultra high-field neuroimaging to uncover preserved, though latent, representation of amputees' missing hand. We show that representation of the missing hand's individual fingers persists in the primary somatosensory cortex even decades after arm amputation. By demonstrating stable topography despite amputation, our finding questions the extent to which continued sensory input is necessary to maintain organisation in sensory cortex, thereby reopening the question what happens to a cortical territory once its main input is lost. The discovery of persistent digit topography of amputees' missing hand could be exploited for the development of intuitive and fine-grained control of neuroprosthetics, requiring neural signals of individual digits.

Article and author information

Author details

  1. Sanne Kikkert

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. James Kolasinski

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1599-6440
  3. Saad Jbabdi

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Irene Tracey

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Christian F Beckmann

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Heidi Johansen-Berg

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    Competing interests
    Heidi Johansen-Berg, Reviewing editor, eLife.
  7. Tamar R Makin

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    For correspondence
    tamar.makin@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5816-8979

Funding

Merton College, University of Oxford (Graduate School Studentship)

  • Sanne Kikkert

Wellcome Trust (UK Strategic Award , 098369/Z/12/Z)

  • Christian F Beckmann

Medical Research Council (Graduate School Studentship)

  • Sanne Kikkert

University College, Oxford (Stevenson Junior Research Fellowship)

  • James Kolasinski

Medical Research Council (MR/L009013/1)

  • Saad Jbabdi

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-Vidi 864-12-003)

  • Christian F Beckmann

Wellcome Trust (Strategic Award)

  • Irene Tracey

NIHR Oxford Biomedical Research Centre

  • Irene Tracey

Wellcome Trust (Principal Research Fellow, 110027/Z/15/Z)

  • Heidi Johansen-Berg

Wellcome Trust and Royal Society (Sir Henry Dale Fellowship, 104128/Z/14/Z)

  • Tamar R Makin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Klaas Enno Stephan, University of Zurich and ETH Zurich, Switzerland

Ethics

Human subjects: Ethical approval was granted by the NHS National Research Ethics service (10/H0707/29) and written informed consent was obtained from all participants prior to the study.

Version history

  1. Received: February 23, 2016
  2. Accepted: August 22, 2016
  3. Accepted Manuscript published: August 23, 2016 (version 1)
  4. Version of Record published: September 28, 2016 (version 2)

Copyright

© 2016, Kikkert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,399
    views
  • 1,360
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sanne Kikkert
  2. James Kolasinski
  3. Saad Jbabdi
  4. Irene Tracey
  5. Christian F Beckmann
  6. Heidi Johansen-Berg
  7. Tamar R Makin
(2016)
Revealing the neural fingerprints of a missing hand
eLife 5:e15292.
https://doi.org/10.7554/eLife.15292

Share this article

https://doi.org/10.7554/eLife.15292

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.