Enhancer regions show high histone H3.3 turnover that changes during differentiation

  1. Aimee M Deaton
  2. Mariluz Gómez-Rodríguez
  3. Jakub Mieczkowski
  4. Michael Y Tolstorukov
  5. Sharmistha Kundu
  6. Ruslan I Sadreyev
  7. Lars ET Jansen
  8. Robert E Kingston  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Instituto Gulbenkian de Ciencia, Portugal
  3. Instituto Gulbenkian de Ciência, Portugal

Abstract

The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation.

Article and author information

Author details

  1. Aimee M Deaton

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariluz Gómez-Rodríguez

    Laboratory for Epigenetic Mechanisms, Instituto Gulbenkian de Ciencia, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Jakub Mieczkowski

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Y Tolstorukov

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sharmistha Kundu

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruslan I Sadreyev

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lars ET Jansen

    Laboratory for Epigenetic Mechanisms, Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert E Kingston

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    For correspondence
    kingston@molbio.mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jerry L Workman, Stowers Institute for Medical Research, United States

Version history

  1. Received: February 17, 2016
  2. Accepted: June 14, 2016
  3. Accepted Manuscript published: June 15, 2016 (version 1)
  4. Version of Record published: July 28, 2016 (version 2)

Copyright

© 2016, Deaton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,791
    views
  • 1,230
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aimee M Deaton
  2. Mariluz Gómez-Rodríguez
  3. Jakub Mieczkowski
  4. Michael Y Tolstorukov
  5. Sharmistha Kundu
  6. Ruslan I Sadreyev
  7. Lars ET Jansen
  8. Robert E Kingston
(2016)
Enhancer regions show high histone H3.3 turnover that changes during differentiation
eLife 5:e15316.
https://doi.org/10.7554/eLife.15316

Share this article

https://doi.org/10.7554/eLife.15316

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.