Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

  1. Shanna L Resendez  Is a corresponding author
  2. Piper C Keyes
  3. Jeremy J Day
  4. Caely Hambro
  5. Curtis J Austin
  6. Francis K Maina
  7. Lori Eidson
  8. Kirsten A Porter-Stransky
  9. Natalie Nevárez
  10. J William McLean
  11. Morgan A Kuhnmuench
  12. Anne Z Murphy
  13. Tiffany A Mathews
  14. Brandon J Aragona  Is a corresponding author
  1. University of Michigan, United States
  2. University of Alabama at Birmingham, United States
  3. Wayne State University, United States
  4. Georgia State University, United States
  5. University of Michigan-Ann Arbor, United States

Abstract

Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds.

Article and author information

Author details

  1. Shanna L Resendez

    Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
    For correspondence
    shanna_resendez@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3831-5481
  2. Piper C Keyes

    Department of Psychology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeremy J Day

    Department of Neurobiology, University of Alabama at Birmingham, Birmangham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Caely Hambro

    Department of Psychology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Curtis J Austin

    Department of Psychology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Francis K Maina

    Department of Chemistry, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lori Eidson

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kirsten A Porter-Stransky

    Department of Psychology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Natalie Nevárez

    Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. J William McLean

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Morgan A Kuhnmuench

    Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Anne Z Murphy

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tiffany A Mathews

    Department of Chemistry, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Brandon J Aragona

    Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
    For correspondence
    aragona@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard D Palmiter, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: All experiments in this study were performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#5531) of the University of Michigan. Experiments conducted in this study were approved by the Institutional Biosafety Committee (#1331) at the University of Michigan. All surgery was performed under ketamine and xylazine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: February 22, 2016
  2. Accepted: July 1, 2016
  3. Accepted Manuscript published: July 2, 2016 (version 1)
  4. Version of Record published: August 3, 2016 (version 2)
  5. Version of Record updated: August 5, 2016 (version 3)

Copyright

© 2016, Resendez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,876
    views
  • 761
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shanna L Resendez
  2. Piper C Keyes
  3. Jeremy J Day
  4. Caely Hambro
  5. Curtis J Austin
  6. Francis K Maina
  7. Lori Eidson
  8. Kirsten A Porter-Stransky
  9. Natalie Nevárez
  10. J William McLean
  11. Morgan A Kuhnmuench
  12. Anne Z Murphy
  13. Tiffany A Mathews
  14. Brandon J Aragona
(2016)
Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds
eLife 5:e15325.
https://doi.org/10.7554/eLife.15325

Share this article

https://doi.org/10.7554/eLife.15325

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.