Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals

  1. Lining Ju
  2. Yunfeng Chen
  3. Lingzhou Xue
  4. Xiaoping Du
  5. Cheng Zhu  Is a corresponding author
  1. Georgia Institute of Technology, United States
  2. Pennsylvania State University, United States
  3. University of Illinois at Chicago, United States

Abstract

How cells sense their mechanical environment and transduce forces into biochemical signals is a crucial yet unresolved question in mechanobiology. Platelets use receptor glycoprotein Ib (GPIb), specifically its α subunit (GPIbα), to signal as they tether and translocate on von Willebrand factor (VWF) of injured arterial surfaces against blood flow. Force slows VWF-GPIbα dissociation (catch bond) and unfolds the GPIbα leucine-rich repeat domain (LRRD) and juxtamembrane mechanosensitive domain (MSD). How these mechanical processes trigger biochemical signals remains unknown. Here we analyze these extracellular events and the resulting intracellular Ca2+ on a single platelet in real time, revealing that LRRD unfolding intensifies the Ca2+ signal analogously whereas MSD unfolding determines the Ca2+ type digitally. The >30nm macroglycopeptide separating the two domains transmits VWF-GPIbα bond lifetime prolonged by LRRD unfolding to enhance MSD unfolding cooperatively at an optimal force, which may serve as a design principle for a generic mechanosensory machine.

Article and author information

Author details

  1. Lining Ju

    Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yunfeng Chen

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lingzhou Xue

    Department of Statistics, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoping Du

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cheng Zhu

    Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
    For correspondence
    cheng.zhu@bme.gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1718-565X

Funding

National Heart, Lung, and Blood Institute (Grant HL132019)

  • Cheng Zhu

Diabetes Australia (IRMA G179720)

  • Lining Ju

University of Sydney (2016 Sydney Medical School ECR Kickstart Grant)

  • Lining Ju

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Taekjip Ha, Johns Hopkins University School of Medicine, United States

Ethics

Human subjects: Human RBCs and platelets for BFP experiments were collected abiding a protocol (#H12354) approved by the Institute Review Broad of Georgia Institute of Technology. Informed consent was obtained from each blood donor.

Version history

  1. Received: February 23, 2016
  2. Accepted: July 18, 2016
  3. Accepted Manuscript published: July 19, 2016 (version 1)
  4. Version of Record published: September 13, 2016 (version 2)

Copyright

© 2016, Ju et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,489
    views
  • 570
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lining Ju
  2. Yunfeng Chen
  3. Lingzhou Xue
  4. Xiaoping Du
  5. Cheng Zhu
(2016)
Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals
eLife 5:e15447.
https://doi.org/10.7554/eLife.15447

Share this article

https://doi.org/10.7554/eLife.15447

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.