DAPK interacts with Patronin and the microtubule cytoskeleton in epidermal development and wound repair

  1. Marian Chuang
  2. Tiffany I Hsiao
  3. Amy Tong
  4. Suhong Xu
  5. Andrew D Chisholm  Is a corresponding author
  1. University of California, San Diego, United States

Abstract

Epidermal barrier epithelia form a first line of defense against the environment, protecting animals against infection and repairing physical damage. In C. elegans, death-associated protein kinase (DAPK-1) regulates epidermal morphogenesis, innate immunity and wound repair. We find that DAPK-1 maintains epidermal tissue integrity through regulation of the microtubule (MT) cytoskeleton. dapk-1 epidermal phenotypes are suppressed by treatment with microtubule-destabilizing drugs and mimicked or enhanced by microtubule-stabilizing drugs. Loss of function in ptrn-1, the C. elegans member of the Patronin/Nezha/CAMSAP family of MT minus-end binding proteins, suppresses dapk-1 epidermal and innate immunity phenotypes. Over-expression of the MT-binding CKK domain of PTRN-1 triggers epidermal and immunity defects resembling those of dapk-1 mutants, and PTRN-1 localization is regulated by DAPK-1. DAPK-1 and PTRN-1 physically interact in co-immunoprecipitation experiments, and DAPK-1 itself undergoes MT-dependent transport. Our results uncover an unexpected interdependence of DAPK-1 and the microtubule cytoskeleton in maintenance of epidermal integrity.

Article and author information

Author details

  1. Marian Chuang

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tiffany I Hsiao

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amy Tong

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Suhong Xu

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew D Chisholm

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
    For correspondence
    chisholm@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5091-0537

Funding

National Institute of General Medical Sciences (R01 GM054657)

  • Amy Tong
  • Suhong Xu
  • Andrew D Chisholm

National Institute of General Medical Sciences (T32 GM007240))

  • Marian Chuang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Didier Y R Stainier, Max Planck Institute for Heart and Lung Research, Germany

Version history

  1. Received: March 7, 2016
  2. Accepted: September 22, 2016
  3. Accepted Manuscript published: September 23, 2016 (version 1)
  4. Version of Record published: October 6, 2016 (version 2)

Copyright

© 2016, Chuang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,762
    views
  • 439
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marian Chuang
  2. Tiffany I Hsiao
  3. Amy Tong
  4. Suhong Xu
  5. Andrew D Chisholm
(2016)
DAPK interacts with Patronin and the microtubule cytoskeleton in epidermal development and wound repair
eLife 5:e15833.
https://doi.org/10.7554/eLife.15833

Share this article

https://doi.org/10.7554/eLife.15833

Further reading

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.