Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration

  1. Kuchuan Chen
  2. Guang Lin
  3. Nele A Haelterman
  4. Tammy Szu-Yu Ho
  5. Tongchao Li
  6. Zhihong Li
  7. Lita Duraine
  8. Brett H Graham
  9. Manish Jaiswal
  10. Shinya Yamamoto
  11. Matthew N Rasband
  12. Hugo J Bellen  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Howard Hughes Medical Institute, Baylor College of Medicine, United States

Abstract

Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/PDk1/Mef2 pathway may play a role in FRDA.

Article and author information

Author details

  1. Kuchuan Chen

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Guang Lin

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  3. Nele A Haelterman

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  4. Tammy Szu-Yu Ho

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Tongchao Li

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Zhihong Li

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Lita Duraine

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  8. Brett H Graham

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Manish Jaiswal

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  10. Shinya Yamamoto

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  11. Matthew N Rasband

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  12. Hugo J Bellen

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    hbellen@bcm.edu
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.

Reviewing Editor

  1. J Paul Taylor, St Jude Children's Research Hospital, United States

Version history

  1. Received: March 18, 2016
  2. Accepted: June 24, 2016
  3. Accepted Manuscript published: June 25, 2016 (version 1)
  4. Version of Record published: July 21, 2016 (version 2)

Copyright

© 2016, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,235
    views
  • 806
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kuchuan Chen
  2. Guang Lin
  3. Nele A Haelterman
  4. Tammy Szu-Yu Ho
  5. Tongchao Li
  6. Zhihong Li
  7. Lita Duraine
  8. Brett H Graham
  9. Manish Jaiswal
  10. Shinya Yamamoto
  11. Matthew N Rasband
  12. Hugo J Bellen
(2016)
Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration
eLife 5:e16043.
https://doi.org/10.7554/eLife.16043

Share this article

https://doi.org/10.7554/eLife.16043

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.