Neural pattern change during encoding of a narrative predicts retrospective duration estimates

  1. Olga Lositsky  Is a corresponding author
  2. Janice Chen
  3. Daniel Toker
  4. Christopher J Honey
  5. Michael Shvartsman
  6. Jordan L Poppenk
  7. Uri Hasson
  8. Kenneth A Norman  Is a corresponding author
  1. Princeton University, United States
  2. University of California, Berkeley, United States
  3. University of Toronto, Canada
  4. Queen's University, Canada

Abstract

What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people's subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analyses found that duration estimates were correlated with the neural pattern distance between two clips at encoding in the right entorhinal cortex. Moreover, whole-brain searchlight analyses revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Olga Lositsky

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    lositsky@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7089-4474
  2. Janice Chen

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Toker

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Honey

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Shvartsman

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jordan L Poppenk

    Department of Psychology, Queen's University, Kingston, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3315-5098
  7. Uri Hasson

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenneth A Norman

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    knorman@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (Early Stage Investigator, R01-MH094480)

  • Uri Hasson

John Templeton Foundation (Proposal 36751)

  • Olga Lositsky
  • Kenneth A Norman

National Institutes of Health (Training Grant, 2T32MH065214)

  • Olga Lositsky
  • Janice Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Ethics

Human subjects: All parts of the experimental procedure were approved by the Princeton Institutional Review Board under Protocol #5516. All participants were screened to ensure no neurological or psychiatric disorders. Written informed consent, and consent to publish, was obtained for all participants in accordance with the Princeton Institutional Review Board regulations.

Version history

  1. Received: March 16, 2016
  2. Accepted: October 17, 2016
  3. Accepted Manuscript published: November 1, 2016 (version 1)
  4. Version of Record published: January 13, 2017 (version 2)
  5. Version of Record updated: January 20, 2017 (version 3)

Copyright

© 2016, Lositsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,343
    views
  • 575
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olga Lositsky
  2. Janice Chen
  3. Daniel Toker
  4. Christopher J Honey
  5. Michael Shvartsman
  6. Jordan L Poppenk
  7. Uri Hasson
  8. Kenneth A Norman
(2016)
Neural pattern change during encoding of a narrative predicts retrospective duration estimates
eLife 5:e16070.
https://doi.org/10.7554/eLife.16070

Share this article

https://doi.org/10.7554/eLife.16070

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.