A Bayesian model of context-sensitive value attribution

  1. Francesco Rigoli  Is a corresponding author
  2. Karl J Friston
  3. Cristina Martinelli
  4. Mirjana Selaković
  5. Sukhwinder S Shergill
  6. Raymond J Dolan
  1. University College London, United Kingdom
  2. University College London, United Kingdom
  3. King's College London, United Kingdom
  4. Sismanogleio General Hospital, Greece

Abstract

Substantial evidence indicates that incentive value depends on an anticipation of rewards within a given context. However, the computations underlying this context sensitivity remain unknown. To address this question we introduce a normative (Bayesian) account of how rewards map to incentive values. This assumes that the brain inverts a model of how rewards are generated. Key features of our account include (i) an influence of prior beliefs about the context in which rewards are delivered (weighted by their reliability in a Bayes-optimal fashion), (ii) the notion that incentive values correspond to precision-weighted prediction errors, (iii) and contextual information unfolding at different hierarchical levels. This formulation implies that incentive value is intrinsically context-dependent. We provide empirical support for this model by showing that incentive value is influenced by context variability and by hierarchically nested contexts. The perspective we introduce generates new empirical predictions that might help explaining psychopathologies, such as addiction.

Article and author information

Author details

  1. Francesco Rigoli

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    For correspondence
    f.rigoli@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Karl J Friston

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Martinelli

    Department of Psychosis Studies, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mirjana Selaković

    Department of Psychiatry, Sismanogleio General Hospital, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  5. Sukhwinder S Shergill

    Department of Psychosis Studies, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Raymond J Dolan

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sam Gershman

Ethics

Human subjects: Experiment one was approved by the University College London Research Ethics Committee. Experiment two was approved by the King's College of London Research Ethics Committee. All participants provided written informed consent and were paid for participating.

Version history

  1. Received: March 16, 2016
  2. Accepted: June 16, 2016
  3. Accepted Manuscript published: June 21, 2016 (version 1)
  4. Version of Record published: July 18, 2016 (version 2)

Copyright

© 2016, Rigoli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,140
    views
  • 450
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesco Rigoli
  2. Karl J Friston
  3. Cristina Martinelli
  4. Mirjana Selaković
  5. Sukhwinder S Shergill
  6. Raymond J Dolan
(2016)
A Bayesian model of context-sensitive value attribution
eLife 5:e16127.
https://doi.org/10.7554/eLife.16127

Share this article

https://doi.org/10.7554/eLife.16127

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.