Travel fosters tool use in wild chimpanzees

  1. Thibaud Gruber  Is a corresponding author
  2. Klaus Zuberbühler
  3. Christof Neumann
  1. University of Neuchâtel, Switzerland
  2. Université de Neuchâtel, Switzerland

Abstract

Ecological variation influences the appearance and maintenance of tool use in animals, either due to necessity or opportunity, but little is known about the relative importance of these two factors. Here, we combined long-term behavioural data on feeding and travelling with six years of field experiments in a wild chimpanzee community. In the experiments, subjects engaged with natural logs, which contained energetically valuable honey that was only accessible through tool use. Engagement with the experiment was highest after periods of low fruit availability involving more travel between food patches, while instances of actual tool-using were significantly influenced by prior travel effort only. Additionally, combining data from the main chimpanzee study communities across Africa supported this result, insofar as groups with larger travel efforts had larger tool repertoires. Travel thus appears to foster tool use in wild chimpanzees and may also have been a driving force in early hominin technological evolution.

Article and author information

Author details

  1. Thibaud Gruber

    Department of Comparative Cognition, University of Neuchâtel, Neuchâtel, Switzerland
    For correspondence
    thibaud.gruber@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6766-3947
  2. Klaus Zuberbühler

    Department of Comparative Cognition, Université de Neuchâtel, Neuchâtel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Christof Neumann

    Department of Comparative Cognition, University of Neuchâtel, Neuchâtel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0236-1219

Funding

European Commission (329197)

  • Thibaud Gruber

European Commission (283871)

  • Klaus Zuberbühler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Russ Fernald, Stanford University, United States

Ethics

Animal experimentation: Permission to conduct the chimpanzee research was given by Uganda Wildlife Authority (UWA, permit FOD/33/02 to TG) and Uganda National Council for Science and Technology (UNCST, permit ns431 to TG). Research protocols were reviewed and approved by the veterinary staff at Budongo Conservation Field Station. Ethical approval was given by the Ethics Committees at the School of Psychology, University of St Andrews and the University of Neuchâtel.

Version history

  1. Received: March 24, 2016
  2. Accepted: July 6, 2016
  3. Accepted Manuscript published: July 19, 2016 (version 1)
  4. Version of Record published: August 3, 2016 (version 2)

Copyright

© 2016, Gruber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,847
    views
  • 543
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thibaud Gruber
  2. Klaus Zuberbühler
  3. Christof Neumann
(2016)
Travel fosters tool use in wild chimpanzees
eLife 5:e16371.
https://doi.org/10.7554/eLife.16371

Share this article

https://doi.org/10.7554/eLife.16371

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.