Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome

  1. An Van den Bossche  Is a corresponding author
  2. Steven W Hardwick
  3. Pieter-Jan Ceyssens
  4. Hanne Hendrix
  5. Marleen Voet
  6. Tom Dendooven
  7. Katarzyna J Bandyra
  8. Marc De Maeyer
  9. Abram Aertsen
  10. Jean-Paul Noben
  11. Ben F Luisi  Is a corresponding author
  12. Rob Lavigne  Is a corresponding author
  1. KU Leuven, Belgium
  2. University of Cambridge, United Kingdom
  3. Scietific Institute of Public Health, Belgium
  4. UHasselt, Belgium

Abstract

In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage ΦKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, ΦKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.

Data availability

The following data sets were generated
    1. Steven Hardwick
    (2016) crystal structure
    Publicly available at the RCSB Protein Data Bank (accession no: 5FT1).
    1. An Van den Bossche
    2. Jean-Paul Noben
    (2015) Mass spectrometry data set
    Publicly available at the PRIDE Archive (accession no: PXD003285).

Article and author information

Author details

  1. An Van den Bossche

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    For correspondence
    An.vandenbossche@wiv-isp.be
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven W Hardwick

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Pieter-Jan Ceyssens

    Division of Bacterial diseases, Scietific Institute of Public Health, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanne Hendrix

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Marleen Voet

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Tom Dendooven

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Katarzyna J Bandyra

    Department of Biochemsitry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Marc De Maeyer

    Biochemistry, Molecular and Structural Biology Scetion, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Abram Aertsen

    Laboratory of Microbiology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-Paul Noben

    Biomedical Research Institute and Transnational University Limburg, UHasselt, Diepenbeek, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  11. Ben F Luisi

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    bfl20@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  12. Rob Lavigne

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    For correspondence
    rob.lavigne@biw.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7377-1314

Funding

Fonds Wetenschappelijk Onderzoek (G.0599.11 & Scolarship AV)

  • An Van den Bossche
  • Pieter-Jan Ceyssens
  • Hanne Hendrix
  • Rob Lavigne

Agentschap voor Innovatie door Wetenschap en Technologie (SBO 100042)

  • An Van den Bossche
  • Pieter-Jan Ceyssens
  • Rob Lavigne

Onderzoeksraad, KU Leuven (CREA/09/017 & IDO/10/012)

  • Abram Aertsen
  • Rob Lavigne

Wellcome Trust (scholarship SH, BL)

  • Steven W Hardwick
  • Ben F Luisi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Version history

  1. Received: April 1, 2016
  2. Accepted: July 18, 2016
  3. Accepted Manuscript published: July 22, 2016 (version 1)
  4. Version of Record published: August 10, 2016 (version 2)

Copyright

© 2016, Van den Bossche et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,540
    views
  • 515
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. An Van den Bossche
  2. Steven W Hardwick
  3. Pieter-Jan Ceyssens
  4. Hanne Hendrix
  5. Marleen Voet
  6. Tom Dendooven
  7. Katarzyna J Bandyra
  8. Marc De Maeyer
  9. Abram Aertsen
  10. Jean-Paul Noben
  11. Ben F Luisi
  12. Rob Lavigne
(2016)
Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome
eLife 5:e16413.
https://doi.org/10.7554/eLife.16413

Share this article

https://doi.org/10.7554/eLife.16413

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.