1. Lena Eliasson  Is a corresponding author
  2. Anna Wendt
  1. Lund University, Sweden

Diabetes is a disease that causes the level of glucose in the blood to become too high. In healthy individuals, two hormones – called insulin and glucagon – work together to keep blood glucose levels within strict limits. Insulin is released when the level of glucose becomes too high, and it stimulates the removal of glucose from the blood so that it can be stored in tissues. On the other hand, glucagon is released when the level of glucose becomes too low, and it triggers the release of glucose from the tissues into the bloodstream.

Many diabetic patients are not able to produce insulin and rely on regular insulin injections to prevent their blood glucose from reaching dangerous levels (insulin-dependent diabetes). Although these injections save lives, they are not sufficient to achieve and maintain the levels of blood glucose that are found in healthy individuals. Even patients considered to have well-controlled diabetes suffer from complications that can damage many tissues in the body. The fact that diabetic patients have too little insulin, as well as uncontrolled levels of glucagon, has led to the hypothesis that diabetes is triggered by inappropriate levels of both hormones, not just insulin alone (Unger and Orci, 1975).

Both insulin and glucagon are produced in the pancreas, within structures called the Islets of Langerhans. Destroying the cells that produce insulin – known as β-cells – causes normal mice to develop diabetes. However, several researchers have recently reported that mice lacking the receptor for glucagon do not develop diabetes when their β-cells are destroyed (Conarello et al., 2007; Lee et al., 2011). These data have attracted a lot of attention since they hold the promise of a new way to treat diabetes, but the conclusions are disputed (Steenberg et al., 2016). Now, in eLife, Pedro Herrera from the University of Geneva and co-workers – including Nicolas Damond as first author – report that inhibiting the action of glucagon to treat diabetes only works if a certain number of β-cells are still present (Damond et al., 2016).

Damond et al. – who are based at the University of Geneva, Eli Lilly, Albert Einstein College of Medicine, Columbia University and Vanderbilt University – made use of mice lacking the glucagon receptor and, in separate experiments, antibodies that can block glucagon signaling. Using these two strategies they were able to elegantly show that if virtually all the β-cells were destroyed, blocking the glucagon signal could not prevent diabetes. However, when the majority, but not all, of the β-cells are destroyed, blocking the glucagon signal could prevent the mice from developing diabetes.

These findings naturally raise the question of whether it is possible to treat diabetes by replacing some of the lost β-cells and administering glucagon inhibitors, instead of giving insulin injections. When faced with severe β-cell loss, the α-cells that normally only produce glucagon can convert to producing both insulin and glucagon (Thorel et al., 2010). Earlier studies show that blocking the glucagon signal increases the number of α-cells (Gelling et al., 2003). Here, Damond et al. show that α-cells are still able to convert to produce both hormones when the glucagon signal is blocked, which results in the Islet of Langerhans having a higher absolute number of α-cells that produce both insulin and glucagon.

How do these findings apply to humans? The experiments make it clear that diabetic patients who cannot produce any insulin would not benefit from a blockade of glucagon signaling. Damond et al. also alert us to the fact that a combination of insulin treatment and blockage of glucagon action might be risky. According to experiments in their laboratories, glucagon signaling is vital to reduce the risk of blood glucose levels becoming too low after insulin injections (unpublished data).

On the other hand, if a patient has enough β-cells to be able to properly respond to changes in blood glucose levels, blocking the glucagon signal might be a useful treatment strategy. Many diabetic patients are not dependent on insulin injections because their β-cells are able to produce some insulin, but not enough to meet the demand. Changes in lifestyle and diet are often effective ways to reduce symptoms in these patients, but it is possible that they could also benefit from receiving drugs that block the glucagon signal.

We know that some patients with insulin-dependent diabetes still have some functional β-cells (Ludvigsson and Heding, 1976). It is not yet clear how many β-cells would be needed for glucagon signal blockers to be an effective alternative to insulin treatment. However, recent advances in understanding how to maintain and/or increase insulin production (Carlsson et al., 2015) provide us with confidence that this milestone will eventually be reached. Although it is not clear what the ideal balance of α-cells and β-cells in the Islets of Langerhans is, the work of Damond et al. tells us that optimal control of blood glucose levels requires these cells to be partners for life.

References

Article and author information

Author details

  1. Lena Eliasson

    Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
    For correspondence
    lena.eliasson@med.lu.se
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Wendt

    Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8807-5979

Publication history

  1. Version of Record published: May 18, 2016 (version 1)

Copyright

© 2016, Eliasson et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 808
    views
  • 109
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lena Eliasson
  2. Anna Wendt
(2016)
Diabetes: Partners for life
eLife 5:e16798.
https://doi.org/10.7554/eLife.16798

Further reading

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.