A functional genomics screen in planarians reveals regulators of whole-brain regeneration

  1. Rachel H Roberts-Galbraith  Is a corresponding author
  2. John L Brubacher
  3. Phillip A Newmark  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, United States
  2. Canadian Mennonite University, Canada
  3. University of Wisconsin-Madison, United States

Abstract

Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal's ability to regenerate its brain.

Data availability

The following data sets were generated
    1. Roberts-Galbraith
    2. Brubacher
    3. and Newmark
    (2016) Illumina Sequencing of transcripts during regeneration
    Publicly available at the Sequence Read Archive (accession no: PRJNA319973).

Article and author information

Author details

  1. Rachel H Roberts-Galbraith

    Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    rhrgalb@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2682-2366
  2. John L Brubacher

    Department of Biology, Canadian Mennonite University, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2346-9245
  3. Phillip A Newmark

    Department of Zoology, Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
    For correspondence
    pnewmark@morgridge.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0793-022X

Funding

Howard Hughes Medical Institute

  • Phillip A Newmark

Jane Coffin Childs Memorial Fund for Medical Research

  • Rachel H Roberts-Galbraith

Faculty Research Grant from Canadian Mennonite University

  • John L Brubacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alejandro Sánchez Alvarado, Stowers Institute for Medical Research, United States

Version history

  1. Received: April 16, 2016
  2. Accepted: September 2, 2016
  3. Accepted Manuscript published: September 9, 2016 (version 1)
  4. Version of Record published: October 7, 2016 (version 2)

Copyright

© 2016, Roberts-Galbraith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,337
    views
  • 1,071
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel H Roberts-Galbraith
  2. John L Brubacher
  3. Phillip A Newmark
(2016)
A functional genomics screen in planarians reveals regulators of whole-brain regeneration
eLife 5:e17002.
https://doi.org/10.7554/eLife.17002

Share this article

https://doi.org/10.7554/eLife.17002

Further reading

    1. Stem Cells and Regenerative Medicine
    Jing-Ping Wang, Chun-Hao Hung ... C-K James Shen
    Research Article

    A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.