Human Intracranial recordings link suppressed transients rather than 'filling-in' to perceptual continuity across blinks

  1. Tal Golan
  2. Ido Davidesco
  3. Meir Meshulam
  4. David M Groppe
  5. Pierre Mégevand
  6. Erin M Yeagle
  7. Matthew S Goldfinger
  8. Michal Harel
  9. Lucia Melloni
  10. Charles E Schroeder
  11. Leon Y Deouell
  12. Ashesh D Mehta
  13. Rafael Malach  Is a corresponding author
  1. The Hebrew University of Jerusalem, Israel
  2. New York University, United States
  3. Weizmann Institute of Science, Israel
  4. Hofstra Northwell School of Medicine, United States
  5. Columbia University College of Physicians and Surgeons, United States
  6. The Weizmann Institute of Science, Israel

Abstract

We hardly notice our eye blinks, yet an externally generated retinal interruption of a similar duration is perceptually salient. We examined the neural correlates of this perceptual distinction using intracranially measured ECoG signals from human visual cortex in 14 patients. In early visual areas (V1 and V2), the disappearance of the stimulus due to either invisible blinks or salient blank video frames ('gaps') led to a similar drop in activity level, followed by a positive overshoot beyond baseline, triggered by stimulus reappearance. Ascending the visual hierarchy, the reappearance-related overshoot gradually subsided for blinks but not for gaps. By contrast, the disappearance-related drop did not follow the perceptual distinction - it was actually slightly more pronounced for blinks than for gaps. These findings suggest that blinks' limited visibility compared with gaps is correlated with suppression of blink-related visual activity transients, rather than with 'filling-in' of the occluded content during blinks.

Article and author information

Author details

  1. Tal Golan

    Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7940-7473
  2. Ido Davidesco

    Department of Psychology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meir Meshulam

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. David M Groppe

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre Mégevand

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0427-547X
  6. Erin M Yeagle

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew S Goldfinger

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michal Harel

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Lucia Melloni

    Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Charles E Schroeder

    Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Leon Y Deouell

    Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Ashesh D Mehta

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7293-1101
  13. Rafael Malach

    Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    rafi.malach@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2869-680X

Funding

Helen and Martin Kimmel Award (7204760501)

  • Rafael Malach

Israel Science Foundation (I-CORE, 7111000508)

  • Rafael Malach

United States-Israel Binational Science Foundation (2013070)

  • Leon Y Deouell

Israel Science Foundation (1902_14)

  • Leon Y Deouell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tatiana Pasternak, University of Rochester, United States

Ethics

Human subjects: All patients gave fully informed consent, including consent to publish, according to NIH guidelines, as monitored by the institutional review board at the Feinstein Institute for Medical Research, in accordance with the Declaration of Helsinki. Data was obtained as part of protocol number 07-125. Patients had the opportunity to consent prior to electrode implantation and were informed that they may choose to decline or later withdraw from the study without affecting their clinical care. Consent includes agreement to participate with studies of cognitive and sensorimotor processes and publication of any deidentified data obtained. Risks include tedium and potential breach of medical information and are minimized by giving ample breaks and implementation of protocols to deidentify data close to the time of recording. Benefits to the subject include increased monitoring of the electrocorticogram and involvement of research methods to help localize electrodes with respect to preoperative MRI.

Version history

  1. Received: April 26, 2016
  2. Accepted: September 24, 2016
  3. Accepted Manuscript published: September 29, 2016 (version 1)
  4. Version of Record published: November 9, 2016 (version 2)

Copyright

© 2016, Golan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,914
    views
  • 329
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tal Golan
  2. Ido Davidesco
  3. Meir Meshulam
  4. David M Groppe
  5. Pierre Mégevand
  6. Erin M Yeagle
  7. Matthew S Goldfinger
  8. Michal Harel
  9. Lucia Melloni
  10. Charles E Schroeder
  11. Leon Y Deouell
  12. Ashesh D Mehta
  13. Rafael Malach
(2016)
Human Intracranial recordings link suppressed transients rather than 'filling-in' to perceptual continuity across blinks
eLife 5:e17243.
https://doi.org/10.7554/eLife.17243

Share this article

https://doi.org/10.7554/eLife.17243

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.