Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants

Abstract

Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6,500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Edward JD Greenwood

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ejdg2@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicholas J Matheson

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    njm25@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3318-1851
  3. Kim Wals

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Dick JH van den Boomen

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Robin Antrobus

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. James C Williamson

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul J Lehner

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    pjl30@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9383-1054

Funding

Wellcome Trust PRF (101835/Z/13/Z)

  • Paul J Lehner

Wellcome Trust PRF (093964/Z/10/Z)

  • Nicholas J Matheson

Addenbrooke's Charitable Trust, Cambridge University Hospitals

  • Nicholas J Matheson

Raymond and Beverly Sackler Foundation

  • Nicholas J Matheson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

Reviewing Editor

  1. Éric A. Cohen, IRCM-UdeM Chair of Excellence in HIV Research, Canada

Version history

  1. Received: May 30, 2016
  2. Accepted: September 28, 2016
  3. Accepted Manuscript published: September 30, 2016 (version 1)
  4. Accepted Manuscript updated: October 1, 2016 (version 2)
  5. Version of Record published: October 28, 2016 (version 3)

Copyright

© 2016, Greenwood et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,659
    views
  • 868
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward JD Greenwood
  2. Nicholas J Matheson
  3. Kim Wals
  4. Dick JH van den Boomen
  5. Robin Antrobus
  6. James C Williamson
  7. Paul J Lehner
(2016)
Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants
eLife 5:e18296.
https://doi.org/10.7554/eLife.18296

Share this article

https://doi.org/10.7554/eLife.18296

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Clara Akpan
    Insight

    Systematically tracking and analysing reproductive loss in livestock helps with efforts to safeguard the health and productivity of food animals by identifying causes and high-risk areas.

    1. Microbiology and Infectious Disease
    Hina Khan, Partha Paul ... Dibyendu Sarkar
    Research Article

    Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3′,5′-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.