PDZD7-MYO7A complex identified in enriched stereocilia membranes

  1. Clive P Morgan
  2. Jocelyn F Krey
  3. M'Hamed Grati
  4. Bo Zhao
  5. Shannon Fallen
  6. Abhiraami Kannan-Sundhari
  7. Xue Zhong Liu
  8. Dongseok Choi
  9. Ulrich Müller
  10. Peter G Barr-Gillespie  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. University of Miami, United States
  3. The Scripps Research Institute, United States

Abstract

While more than 70 genes have been linked to deafness, most of which are expressed in mechanosensory hair cells of the inner ear, a challenge has been to link these genes into molecular pathways. One example is Myo7a (myosin VIIA), in which deafness mutations affect the development and function of the mechanically sensitive stereocilia of hair cells. We describe here a procedure for the isolation of low-abundance protein complexes from stereocilia membrane fractions. Using this procedure, combined with identification and quantitation of proteins with mass spectrometry, we demonstrate that MYO7A forms a complex with PDZD7, a paralog of USH1C and DFNB31. MYO7A and PDZD7 interact in tissue-culture cells, and co-localize to the ankle-link region of stereocilia in wild-type but not Myo7a mutant mice. Our data thus describe a new paradigm for the interrogation of low-abundance protein complexes in hair cell stereocilia and establish an unanticipated link between MYO7A and PDZD7.

Data availability

The following data sets were generated
    1. Barr-Gillespie
    2. PG
    (2016) D10 Stereocilia Membrane Enrichment
    Available at the PRIDE Archive (accession no. PXD004222).

Article and author information

Author details

  1. Clive P Morgan

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jocelyn F Krey

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. M'Hamed Grati

    Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bo Zhao

    Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shannon Fallen

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Abhiraami Kannan-Sundhari

    Department of Otolaryngology, Miller School of Medicine,, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xue Zhong Liu

    Department of Otolaryngology, Miller School of Medicine,, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dongseok Choi

    OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ulrich Müller

    Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter G Barr-Gillespie

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    gillespp@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9787-5860

Funding

National Institute on Deafness and Other Communication Disorders (R01DC002368)

  • Peter G Barr-Gillespie

National Institute on Deafness and Other Communication Disorders (P30DC005983)

  • Peter G Barr-Gillespie

National Institute on Deafness and Other Communication Disorders (R01DC014427)

  • Ulrich Müller
  • Peter G Barr-Gillespie

National Institute on Deafness and Other Communication Disorders (R01DC005965)

  • Ulrich Müller

National Institute on Deafness and Other Communication Disorders (R01DC05575)

  • Xue Zhong Liu

National Institute on Deafness and Other Communication Disorders (R01DC012546)

  • Xue Zhong Liu

National Institute on Deafness and Other Communication Disorders (R01DC012115)

  • Xue Zhong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy Nathans, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled and euthanized according to a protocol (#IS00003292) that was approved by the institutional animal care and use committee (IACUC) of the Oregon Health & Science University.

Version history

  1. Received: June 24, 2016
  2. Accepted: August 14, 2016
  3. Accepted Manuscript published: August 15, 2016 (version 1)
  4. Version of Record published: August 30, 2016 (version 2)

Copyright

© 2016, Morgan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,908
    views
  • 494
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clive P Morgan
  2. Jocelyn F Krey
  3. M'Hamed Grati
  4. Bo Zhao
  5. Shannon Fallen
  6. Abhiraami Kannan-Sundhari
  7. Xue Zhong Liu
  8. Dongseok Choi
  9. Ulrich Müller
  10. Peter G Barr-Gillespie
(2016)
PDZD7-MYO7A complex identified in enriched stereocilia membranes
eLife 5:e18312.
https://doi.org/10.7554/eLife.18312

Share this article

https://doi.org/10.7554/eLife.18312

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.