Abstract

During illumination, the light sensitive plasma membrane (rhabdomere) of Drosophila photoreceptors undergoes turnover with consequent changes in size and composition. However the mechanism by which illumination is coupled to rhabdomere turnover remains unclear. We find that photoreceptors contain a light-dependent phospholipase D (PLD) activity. During illumination, loss of PLD resulted in an enhanced reduction in rhabdomere size, accumulation of Rab7 positive, rhodopsin1-containing vesicles (RLVs) in the cell body and reduced rhodopsin protein. These phenotypes were associated with reduced levels of phosphatidic acid, the product of PLD activity and were rescued by reconstitution with catalytically active PLD. In wild type photoreceptors, during illumination, enhanced PLD activity was sufficient to clear RLVs from the cell body by a process dependent on Arf1-GTP levels and retromer complex function. Thus, during illumination, PLD activity couples endocytosis of RLVs with their recycling to the plasma membrane thus maintaining plasma membrane size and composition.

Article and author information

Author details

  1. Rajan Thakur

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9511-5729
  2. Aniruddha Panda

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Elise Coessens

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikita Raj

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Shweta Yadav

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Sruthi Balakrishnan

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Qifeng Zhang

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Plamen Georgiev

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Bishal Basak

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Renu Pasricha

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael JO Wakelam

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicholas T Ktistakis

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9397-2914
  13. Raghu Padinjat

    National Centre for Biological Sciences, Bangalore, India
    For correspondence
    praghu@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3578-6413

Funding

Wellcome Trust DBT India Alliance (IA/S/14/2/501540)

  • Rajan Thakur
  • Nikita Raj
  • Shweta Yadav
  • Sruthi Balakrishnan
  • Bishal Basak
  • Raghu Padinjat

National Centre for Biological Sciences (core)

  • Rajan Thakur
  • Aniruddha Panda
  • Nikita Raj
  • Shweta Yadav
  • Sruthi Balakrishnan
  • Bishal Basak
  • Renu Pasricha
  • Raghu Padinjat

Department of Biotechnology , Ministry of Science and Technology (BT/PR4833/MED/30/744/2012)

  • Rajan Thakur
  • Aniruddha Panda
  • Nikita Raj
  • Shweta Yadav
  • Sruthi Balakrishnan
  • Bishal Basak
  • Renu Pasricha
  • Raghu Padinjat

Biotechnology and Biological Sciences Research Council (core)

  • Elise Coessens
  • Qifeng Zhang
  • Plamen Georgiev
  • Michael JO Wakelam
  • Nicholas T Ktistakis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: June 5, 2016
  2. Accepted: November 14, 2016
  3. Accepted Manuscript published: November 16, 2016 (version 1)
  4. Version of Record published: November 28, 2016 (version 2)

Copyright

© 2016, Thakur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,198
    views
  • 642
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajan Thakur
  2. Aniruddha Panda
  3. Elise Coessens
  4. Nikita Raj
  5. Shweta Yadav
  6. Sruthi Balakrishnan
  7. Qifeng Zhang
  8. Plamen Georgiev
  9. Bishal Basak
  10. Renu Pasricha
  11. Michael JO Wakelam
  12. Nicholas T Ktistakis
  13. Raghu Padinjat
(2016)
Phospholipase D activity couples plasma membrane endocytosis with retromer dependent recycling
eLife 5:e18515.
https://doi.org/10.7554/eLife.18515

Share this article

https://doi.org/10.7554/eLife.18515

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.