Molecular basis of sidekick-mediated cell-cell adhesion and specificity

  1. Kerry M Goodman
  2. Masahito Yamagata
  3. Xiangshu Jin
  4. Seetha Mannepalli
  5. Phinikoula S Katsamba
  6. Göran Ahlsén
  7. Alina P Sergeeva
  8. Barry Honig  Is a corresponding author
  9. Joshua R Sanes  Is a corresponding author
  10. Lawrence Shapiro  Is a corresponding author
  1. Columbia University, United States
  2. Harvard University, United States
  3. Michigan State University, United States

Abstract

Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1-4), arranged in a horseshoe conformation. These Ig1-4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (via trans interactions) and Sdk clustering in isolated cells (via cis interactions). Sdk1/Sdk2 recognition specificity is encoded across Ig1-4, with Ig1-2 conferring the majority of binding affinity and differential specificity. We suggest that competition between cis and trans interactions provides a novel mechanism to sharpen the specificity of cell-cell interactions.

Article and author information

Author details

  1. Kerry M Goodman

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Masahito Yamagata

    Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8193-2931
  3. Xiangshu Jin

    Department of Chemistry, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Seetha Mannepalli

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Phinikoula S Katsamba

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Göran Ahlsén

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alina P Sergeeva

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Barry Honig

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    For correspondence
    bh6@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2480-6696
  9. Joshua R Sanes

    Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, United States
    For correspondence
    sanesj@mcb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8926-8836
  10. Lawrence Shapiro

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    For correspondence
    shapiro@convex.hhmi.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9943-8819

Funding

National Institutes of Health

  • Lawrence Shapiro

Howard Hughes Medical Institute

  • Xiangshu Jin
  • Phinikoula S Katsamba
  • Alina P Sergeeva
  • Barry Honig

National Institutes of Health

  • Joshua R Sanes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mingjie Zhang, The Hong Kong University of Science and Technology, China

Version history

  1. Received: June 23, 2016
  2. Accepted: September 17, 2016
  3. Accepted Manuscript published: September 19, 2016 (version 1)
  4. Version of Record published: September 30, 2016 (version 2)
  5. Version of Record updated: October 4, 2016 (version 3)

Copyright

© 2016, Goodman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,899
    views
  • 588
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kerry M Goodman
  2. Masahito Yamagata
  3. Xiangshu Jin
  4. Seetha Mannepalli
  5. Phinikoula S Katsamba
  6. Göran Ahlsén
  7. Alina P Sergeeva
  8. Barry Honig
  9. Joshua R Sanes
  10. Lawrence Shapiro
(2016)
Molecular basis of sidekick-mediated cell-cell adhesion and specificity
eLife 5:e19058.
https://doi.org/10.7554/eLife.19058

Share this article

https://doi.org/10.7554/eLife.19058

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.