Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana

  1. Wenwu Zhou
  2. Thomas Brockmöller
  3. Zhihao Ling
  4. Ashton Omdahl
  5. Ian T Baldwin
  6. Shuqing Xu  Is a corresponding author
  1. Max Planck Institute for Chemical Ecology, Germany
  2. Brigham Young University, United States
  3. Max-Planck Institute for Chemical Ecology, Germany

Abstract

Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Wenwu Zhou

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  2. Thomas Brockmöller

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  3. Zhihao Ling

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  4. Ashton Omdahl

    Brigham Young University, Provo, United States
    Competing interests
    No competing interests declared.
  5. Ian T Baldwin

    Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    Ian T Baldwin, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5371-2974
  6. Shuqing Xu

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    sxu@ice.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7010-4604

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (PEBZP3-142886)

  • Shuqing Xu

European Research Council (293926)

  • Ian T Baldwin

European Commission (328935)

  • Shuqing Xu

Max-Planck-Gesellschaft

  • Wenwu Zhou
  • Thomas Brockmöller
  • Zhihao Ling
  • Ashton Omdahl
  • Ian T Baldwin
  • Shuqing Xu

Sutter-Stötner-Stiftung

  • Shuqing Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joerg Bohlmann, University of British Columbia, Canada

Version history

  1. Received: July 11, 2016
  2. Accepted: November 1, 2016
  3. Accepted Manuscript published: November 4, 2016 (version 1)
  4. Version of Record published: November 18, 2016 (version 2)

Copyright

© 2016, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,293
    views
  • 531
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenwu Zhou
  2. Thomas Brockmöller
  3. Zhihao Ling
  4. Ashton Omdahl
  5. Ian T Baldwin
  6. Shuqing Xu
(2016)
Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana
eLife 5:e19531.
https://doi.org/10.7554/eLife.19531

Share this article

https://doi.org/10.7554/eLife.19531

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.