Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis

  1. Blair W Benham-Pyle
  2. Joo Yong Sim
  3. Kevin C Hart
  4. Beth L Pruitt
  5. William James Nelson  Is a corresponding author
  1. Stanford University, United States
  2. Electronics and Telecommunications Research Institute, Republic of Korea

Abstract

Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis.

Article and author information

Author details

  1. Blair W Benham-Pyle

    Program in Cancer Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Joo Yong Sim

    Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Kevin C Hart

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Beth L Pruitt

    Stanford Cardiovascular Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4861-2124
  5. William James Nelson

    Program in Cancer Biology, Stanford University, Stanford, United States
    For correspondence
    wjnelson@stanford.edu
    Competing interests
    William James Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3039-3776

Funding

National Science Foundation (1136790)

  • Beth L Pruitt
  • William James Nelson

National Science Foundation (Graduate Student Fellowship)

  • Blair W Benham-Pyle

National Institutes of Health (T32GM007276)

  • Kevin C Hart

National Institutes of Health (11R35GM118064-01)

  • William James Nelson

Stanford University (Bio-X Graduate Fellowship)

  • Joo Yong Sim

Stanford University (Bio-X Graduate Fellowship)

  • Kevin C Hart

Stanford University (Lieberman Graduate Fellowship)

  • Blair W Benham-Pyle

National Science Foundation (DGE-114747)

  • William James Nelson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Fässler, Max Planck Institute of Biochemistry, Germany

Version history

  1. Received: July 20, 2016
  2. Accepted: October 25, 2016
  3. Accepted Manuscript published: October 26, 2016 (version 1)
  4. Version of Record published: November 10, 2016 (version 2)

Copyright

© 2016, Benham-Pyle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,111
    views
  • 651
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Blair W Benham-Pyle
  2. Joo Yong Sim
  3. Kevin C Hart
  4. Beth L Pruitt
  5. William James Nelson
(2016)
Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis
eLife 5:e19799.
https://doi.org/10.7554/eLife.19799

Share this article

https://doi.org/10.7554/eLife.19799

Further reading

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.