Suppressor of Cytokine Signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling

  1. Lukasz Kedzierski
  2. Michelle D Tate
  3. Alan C Hsu
  4. Tatiana B Kolesnik
  5. Edmond M Linossi
  6. Laura Dagley
  7. Zhaoguang Dong
  8. Sarah Freeman
  9. Giuseppe Infusini
  10. Malcolm R Starkey
  11. Nicola L Bird
  12. Simon M Chatfield
  13. Jeffrey J Babon
  14. Nicholas Huntington
  15. Gabrielle Belz
  16. Andrew Webb
  17. Peter AB Wark
  18. Nicos A Nicola
  19. Jianqing Xu
  20. Katherine Kedzierska
  21. Philip M Hansbro  Is a corresponding author
  22. Sandra E Nicholson  Is a corresponding author
  1. The Walter and Eliza Hall Institute of Medical Research, Australia
  2. Hudson Institute of Medical Research, Australia
  3. The University of Newcastle, Australia
  4. Fudan University, China
  5. University of Melbourne, Australia

Abstract

Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) 5 has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.

Article and author information

Author details

  1. Lukasz Kedzierski

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Michelle D Tate

    Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0587-5514
  3. Alan C Hsu

    Priority Research Centre for Asthma and Respiratory Diseases, The University of Newcastle, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6640-0846
  4. Tatiana B Kolesnik

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Edmond M Linossi

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Dagley

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhaoguang Dong

    Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah Freeman

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Giuseppe Infusini

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Malcolm R Starkey

    Priority Research Centre for Asthma and Respiratory Diseases, The University of Newcastle, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicola L Bird

    Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Simon M Chatfield

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Jeffrey J Babon

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Nicholas Huntington

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Gabrielle Belz

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Andrew Webb

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. Peter AB Wark

    Priority Research Centre for Asthma and Respiratory Diseases, The University of Newcastle, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. Nicos A Nicola

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Jianqing Xu

    Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Katherine Kedzierska

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  21. Philip M Hansbro

    Priority Research Centre for Asthma and Respiratory Diseases, The University of Newcastle, Newcastle, Australia
    For correspondence
    philip.hansbro@newcastle.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  22. Sandra E Nicholson

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    For correspondence
    snicholson@wehi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1314-2134

Funding

National Health and Medical Research Council (Project grants #1047248,1045762,Program grant #1016647)

  • Nicos A Nicola
  • Philip M Hansbro
  • Sandra E Nicholson

Victorian State Government, Australia (Operational Infrastructure Scheme grant)

  • Lukasz Kedzierski
  • Tatiana B Kolesnik
  • Edmond M Linossi
  • Laura Dagley
  • Sarah Freeman
  • Simon M Chatfield
  • Nicholas Huntington
  • Gabrielle Belz
  • Andrew Webb
  • Nicos A Nicola
  • Sandra E Nicholson

Australian Research Council (Future Fellowship)

  • Gabrielle Belz

Australian Federal Government (Australian Postgraduate Award)

  • Edmond M Linossi

National Health and Medical Research Council (Fellowship)

  • Michelle D Tate
  • Nicos A Nicola
  • Katherine Kedzierska
  • Philip M Hansbro

National Health and Medical Research Council (IRIISS grant 361646)

  • Lukasz Kedzierski
  • Tatiana B Kolesnik
  • Edmond M Linossi
  • Laura Dagley
  • Sarah Freeman
  • Giuseppe Infusini
  • Simon M Chatfield
  • Nicholas Huntington
  • Gabrielle Belz
  • Andrew Webb
  • Nicos A Nicola
  • Sandra E Nicholson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Masato Kubo, RIKEN, Japan

Ethics

Animal experimentation: Animal experiments followed the NHMRC Code of Practice for the Care and Use of Animals for Scientific Purposes guidelines and were approved by the Walter and Eliza Hall Institute's Animal Ethics Committee (Ethics Number: 2014.029).

Human subjects: All subjects gave written informed consent and all procedures were performed according to approval from the University of Newcastle Human Ethics Committee (Ethics Number: H-163-1205).

Version history

  1. Received: August 8, 2016
  2. Accepted: February 6, 2017
  3. Accepted Manuscript published: February 14, 2017 (version 1)
  4. Version of Record published: March 16, 2017 (version 2)

Copyright

© 2017, Kedzierski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,463
    views
  • 540
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukasz Kedzierski
  2. Michelle D Tate
  3. Alan C Hsu
  4. Tatiana B Kolesnik
  5. Edmond M Linossi
  6. Laura Dagley
  7. Zhaoguang Dong
  8. Sarah Freeman
  9. Giuseppe Infusini
  10. Malcolm R Starkey
  11. Nicola L Bird
  12. Simon M Chatfield
  13. Jeffrey J Babon
  14. Nicholas Huntington
  15. Gabrielle Belz
  16. Andrew Webb
  17. Peter AB Wark
  18. Nicos A Nicola
  19. Jianqing Xu
  20. Katherine Kedzierska
  21. Philip M Hansbro
  22. Sandra E Nicholson
(2017)
Suppressor of Cytokine Signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling
eLife 6:e20444.
https://doi.org/10.7554/eLife.20444

Share this article

https://doi.org/10.7554/eLife.20444

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.