Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity

  1. Qiang Chen
  2. Zhe Pei
  3. David Koren
  4. Wei Wei  Is a corresponding author
  1. The University of Chicago, United States
  2. The City College of New York, United States

Abstract

The dendrites of starburst amacrine cells (SACs) in the mammalian retina are preferentially activated by motion in the centrifugal direction, a property that is important for generating direction selectivity in direction selective ganglion cells (DSGCs). A candidate mechanism underlying the centrifugal direction selectivity of SAC dendrites is synaptic inhibition onto SACs. Here we disrupted this inhibition by perturbing distinct sets of GABAergic inputs onto SACs - removing either GABA release or GABA receptors from SACs. We found that lateral inhibition onto Off SACs from non-SAC amacrine cells is required for optimal direction selectivity of the Off pathway. In contrast, lateral inhibition onto On SACs is not necessary for direction selectivity of the On pathway when the moving object is on a homogenous background, but is required when the background is noisy. These results demonstrate that distinct sets of inhibitory mechanisms are recruited to generate direction selectivity under different visual conditions.

Article and author information

Author details

  1. Qiang Chen

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhe Pei

    Sophie Davis School of Biomedical Education, The City College of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Koren

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Wei

    Department of Neurobiology, The University of Chicago, Chicago, United States
    For correspondence
    weiw@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7771-5974

Funding

National Eye Institute

  • David Koren
  • Wei Wei

Whitehall Foundation

  • Wei Wei

E. Matilda Ziegler Foundation for the Blind

  • Wei Wei

Karl Kirchgessner Foundation

  • Wei Wei

Sloan Foundation

  • Wei Wei

The funders provide financial support to this manuscript in study design, data collection and interpretation, and the decision to submit the work for publication.

Reviewing Editor

  1. Marla B Feller, University of California, Berkeley, United States

Ethics

Animal experimentation: All procedures to maintain and use mice were in accordance with the University of Chicago Institutional Animal Care and Use Committee (Protocol number ACUP 72247) and in conformance with the NIH Guide for the Care and Use of Laboratory Animals and the Public Health Service Policy.

Version history

  1. Received: August 28, 2016
  2. Accepted: December 7, 2016
  3. Accepted Manuscript published: December 8, 2016 (version 1)
  4. Version of Record published: December 21, 2016 (version 2)

Copyright

© 2016, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,683
    views
  • 520
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiang Chen
  2. Zhe Pei
  3. David Koren
  4. Wei Wei
(2016)
Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity
eLife 5:e21053.
https://doi.org/10.7554/eLife.21053

Share this article

https://doi.org/10.7554/eLife.21053

Further reading

    1. Medicine
    2. Neuroscience
    Yunlu Xue, Yimin Zhou, Constance L Cepko
    Research Advance

    Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP’s structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.