Distributing tasks via multiple input pathways increase cellular survival in stress

  1. Alejandro A Granados
  2. Matthew M Crane
  3. Luis F Montano-Gutierrez
  4. Reiko J Tanaka
  5. Margaritis Voliotis
  6. Peter Swain  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Imperial College London, United Kingdom
  3. University of Exeter, United Kingdom

Abstract

Improving in one aspect of a task can undermine performance in another, but how such opposing demands play out in single cells and impact on fitness is mostly unknown. Here we study budding yeast in dynamic environments of hyperosmotic stress and show how the corresponding signalling network increases cellular survival both by assigning the requirements of high response speed and high response accuracy to two separate input pathways and by having these pathways interact to converge on Hog1, a p38 MAP kinase. Cells with only the less accurate, reflex-like pathway are fitter in sudden stress, whereas cells with only the slow, more accurate pathway are fitter in fluctuating but increasing stress. Our results demonstrate that cellular signalling is vulnerable to trade-offs in performance, but that these trade-offs can be mitigated by assigning the opposing tasks to different signalling subnetworks. Such division of labour could function broadly within cellular signal transduction.

Article and author information

Author details

  1. Alejandro A Granados

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew M Crane

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Luis F Montano-Gutierrez

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Reiko J Tanaka

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0769-9382
  5. Margaritis Voliotis

    Department of Mathematics, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Swain

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    peter.swain@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7489-8587

Funding

Human Frontier Science Program (Research grant)

  • Matthew M Crane
  • Peter Swain

Biotechnology and Biological Sciences Research Council (Responsive mode grant)

  • Matthew M Crane
  • Peter Swain

Engineering and Physical Sciences Research Council (EP/N014391/1)

  • Alejandro A Granados
  • Reiko J Tanaka
  • Margaritis Voliotis

Wellcome Trust (PhD studentship)

  • Luis F Montano-Gutierrez

Consejo Nacional de Ciencia y Tecnología (PhD studentship)

  • Alejandro A Granados
  • Luis F Montano-Gutierrez

SULSA

  • Matthew M Crane
  • Peter Swain

Medical Research Council (Fellowship)

  • Margaritis Voliotis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: September 10, 2016
  2. Accepted: May 12, 2017
  3. Accepted Manuscript published: May 17, 2017 (version 1)
  4. Version of Record published: June 8, 2017 (version 2)

Copyright

© 2017, Granados et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,146
    views
  • 419
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro A Granados
  2. Matthew M Crane
  3. Luis F Montano-Gutierrez
  4. Reiko J Tanaka
  5. Margaritis Voliotis
  6. Peter Swain
(2017)
Distributing tasks via multiple input pathways increase cellular survival in stress
eLife 6:e21415.
https://doi.org/10.7554/eLife.21415

Share this article

https://doi.org/10.7554/eLife.21415

Further reading

    1. Computational and Systems Biology
    David Geller-McGrath, Kishori M Konwar ... Jason E McDermott
    Tools and Resources

    The reconstruction of complete microbial metabolic pathways using ‘omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.