Cryo-EM structures of the autoinhibited <em>E. coli</em> ATP synthase in three rotational states

  1. Meghna Sobti
  2. Callum Smits
  3. Andrew SW Wong
  4. Robert Ishmukhametov
  5. Daniela Stock
  6. Sara Sandin
  7. Alastair G Stewart  Is a corresponding author
  1. The Victor Chang Cardiac Research Institute, Australia
  2. Nanyang Technological University, Singapore
  3. University of Oxford, United Kingdom

Abstract

A molecular model that provides a framework for interpreting the wealth of functional information obtained on the <em>E. coli</em> F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk's &epsilon; subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30&ordm; to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates towards the membrane with its helices separating to embrace subunit a from two sides.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Meghna Sobti

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Callum Smits

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew SW Wong

    NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Ishmukhametov

    Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniela Stock

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara Sandin

    NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Alastair G Stewart

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    For correspondence
    a.stewart@victorchang.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2070-6030

Funding

National Health and Medical Research Council (1004620)

  • Daniela Stock

National Health and Medical Research Council (1109961)

  • Daniela Stock

National Health and Medical Research Council (1090408)

  • Alastair G Stewart

National Health and Medical Research Council (1022143)

  • Daniela Stock

National Health and Medical Research Council (1047004)

  • Daniela Stock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Werner Kühlbrandt, Max Planck Institute of Biophysics, Germany

Version history

  1. Received: September 19, 2016
  2. Accepted: December 15, 2016
  3. Accepted Manuscript published: December 21, 2016 (version 1)
  4. Accepted Manuscript updated: December 22, 2016 (version 2)
  5. Version of Record published: January 5, 2017 (version 3)
  6. Version of Record updated: February 10, 2017 (version 4)

Copyright

© 2016, Sobti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,565
    views
  • 944
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meghna Sobti
  2. Callum Smits
  3. Andrew SW Wong
  4. Robert Ishmukhametov
  5. Daniela Stock
  6. Sara Sandin
  7. Alastair G Stewart
(2016)
Cryo-EM structures of the autoinhibited <em>E. coli</em> ATP synthase in three rotational states
eLife 5:e21598.
https://doi.org/10.7554/eLife.21598

Share this article

https://doi.org/10.7554/eLife.21598

Further reading

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.